基于改进通道注意力优化变分自编码器的居民空调负荷辨识
DOI:
CSTR:
作者:
作者单位:

1.三峡大学电气与新能源学院 宜昌443002; 2.国网衢州供电公司 衢州324000

作者简介:

通讯作者:

中图分类号:

TM714TH702

基金项目:

国家自然科学基金(62476153)项目资助


Identification of residential air conditioning loads via channel-attention-optimized variational autoencoder
Author:
Affiliation:

1.College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China; 2.State Grid Quzhou Power Supply Company, Quzhou 324000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    居民空调负荷的准确辨识是挖掘其调控潜力和实现需求响应的关键。针对目前居民空调功率求解方法的精度不足和计算复杂问题,故提出一种基于变分自编码器(VAE)和改进高效通道注意力机制(ECA)的居民空调负荷非侵入式辨识神经网络模型。改进ECA采用结合全局平均池化与全局最大池化的双池化策略,既捕获整体统计信息又突出局部显著响应。借助压缩-重构机制,在降维后利用快速动态卷积核自适应捕捉局部通道交互信息,有效聚焦关键信息,为通道赋予合理权重;将改进ECA集成在VAE解码器中,增强模型对空调负荷的特征重构能力;模型进一步引入多任务学习框架,联合优化功率分解与状态识别任务,实现任务间信息共享和互补,从而提高整体辨识精度。同时,利用输出模块和后处理状态阈值约束,有效抑制非空调负荷的干扰。最后,在真实居民用电数据集上进行实验验证。实验结果表明,相较于两个对比模型,模型在3个地区所有居民功率分解的平均绝对误差(MAE)均值分别提升59.71%和9.22%,空调状态识别F1值达84.58%。消融实验表明,改进ECA使其中两个地区功率分解MAE分别降低56.23%和12.47%,多任务学习框架进一步推动辨识精度提升3.17%和5.90%。所提出的少量侵入式测量方案以30%用户侵入式量测数据训练,在保证模型准确性的同时,减少对用户数据的依赖,具有较强的应用潜力。

    Abstract:

    Accurate identification of residential air conditioning load is essential for leveraging their regulation potential and enabling effective demand response. To overcome the limitations of existing residential air conditioning power estimation methods, which often suffer from insufficient accuracy and high computational complexity, this paper proposes a novel non-intrusive neural network model that combines a variational autoencoder (VAE) with an enhanced efficient channel attention (ECA) mechanism. The improved ECA incorporates a dual-pooling strategy-combining global average pooling and global maximum pooling-to capture rich statistical information while highlighting prominent local responses. Additionally, a compression-reconstruction mechanism is introduced: after dimensionality reduction, fast dynamic convolutional kernels adaptively model local channel interactions, focusing on key features and assigning appropriate channel weights. This enhanced ECA module is embedded within the VAE decoder to improve feature reconstruction for air conditioning load estimation. Furthermore, a multi-task learning framework jointly optimizes power disaggregation and state recognition tasks, promoting effective information sharing and complementarity to boost overall identification accuracy. An output module with post-processing state threshold constraints is employed to suppress interference from non-air conditioning loads. The proposed model is validated on real-world residential electricity datasets, showing a mean absolute error (MAE) reduction of 59.71% and 9.22%, respectively, compared to two baseline models across three regions, while achieving an air conditioner state recognition F1 score of 84.58%. Ablation studies reveal that the improved ECA contributes to MAE reductions of 56.23% and 12.47% in two regions, and the multi-task learning framework further improves identification accuracy by 3.17% and 5.90%. Moreover, the minimally intrusive measurement approach-training with intrusive data from only 30% of users-significantly reduces reliance on extensive user data while maintaining high accuracy, demonstrating strong potential for practical deployment.

    参考文献
    相似文献
    引证文献
引用本文

王凌云,唐涛,鲍刚,阮胜冬,张涛.基于改进通道注意力优化变分自编码器的居民空调负荷辨识[J].仪器仪表学报,2025,46(5):251-263

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-12
  • 出版日期:
文章二维码