基于闭环检测和地面优化的激光雷达惯性里程计建图与定位
DOI:
CSTR:
作者:
作者单位:

东北大学机器人科学与工程学院沈阳110000

作者简介:

通讯作者:

中图分类号:

TP242TH39

基金项目:

国家自然科学基金(62373087)项目资助


Research on the localization and mapping based on closed-loop detection and ground optimization
Author:
Affiliation:

Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在机器人建图的过程中,通常需要准确的估计机器人的姿态,从而为后期导航和路径规划提供一个基础。然而在常见的室外工作环境中,由于机器人偏航角、滚转角和俯仰角这3个状态量在一定程度上不可观测且难以评价和消除误差,所以经常会导致在户外场景下地图Z轴严重漂移,无法获取一个准确的全局一致地图。为了降低Z轴漂移误差,提出了一种完整的机器人建图系统架构,其通过地面优化和闭环检测两部分相结合的方法降低特征匹配所需点云数量的同时,提高机器人建图的准确性。为了高效融合多源传感器数据,并实时估计惯性测量单元的动态零偏,该系统基于激光惯导同步定位与建图方法,通过构建因子图框架,将激光里程计因子、惯性里程计预积分因子以及回环检测因子纳入其中,通过因子图优化对机器人全局位姿进行估计,从而降低累积误差,最终构建出整体一致的全局地图。该算法部署到了更易产生上下振动的四足机器人平台上进行了实机实验,并使用公开数据集进行广泛评估,与基线方法相比,实验结果表明该系统在保证建图效果的同时,提高了建图精度,降低了绝对轨迹误差平均值。

    Abstract:

    Accurate estimation of a robot′s posture is fundamental for navigation and path planning during the mapping process. However, the states of yaw, roll and pitch of robots are unobservable and difficult to evaluate and eliminate errors in the outdoor environments. This often leads to serious drift of the Z-axis in the generated map, thereby preventing the construction of a globally consistent and accurate map. To address this issue, we propose a complete robot mapping system architecture, which improves the performance of robot mapping combined with two methods: ground segmentation and closed-loop detection. To efficiently integrate data from multiple sensors and estimate the dynamic biases of the Inertial Measurement Unit in real time, the system employs a LiDAR-inertial odometry simultaneous localization and mapping method. By constructing a factor graph framework, the system incorporates Lidar odometry factors, IMU pre-integration factors, and loop closure detection factors. Through factor graph optimization, the robot′s global pose is estimated to reduce accumulated errors and ultimately generate a globally consistent map. In addition, the algorithm has been deployed on the quadruped robot dog platform, conducting outdoor experiments and using public datasets for extensive evaluation. The experimental results showed that our system has better mapping effects and accuracy, significantly reducing the average positional error compared to baseline methods.

    参考文献
    相似文献
    引证文献
引用本文

王禹,王彬彬,王斐,邹强.基于闭环检测和地面优化的激光雷达惯性里程计建图与定位[J].仪器仪表学报,2025,46(5):205-213

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-12
  • 出版日期:
文章二维码