基于MBIT的移动机器人渐进最优路径规划
DOI:
CSTR:
作者:
作者单位:

1中国矿业大学信息与控制工程学院徐州221116; 2国防科技大学智能科学学院长沙410073

作者简介:

通讯作者:

中图分类号:

TP242. 6TH166

基金项目:

国家重点研发计划(2024YFC3016303)、国家自然科学基金(62373364, 62273098)、国家自然科学基金(62373364)、国家重点研发计划课题(2024YFC3016303)中国矿业大学集萃研究生教育教学改革专项(2025JCJG012)项目资助


MBIT* for asymptotically optimal path planning of mobile robot
Author:
Affiliation:

1 School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China; 2College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种基于多批量知情树(Multi-Batch Informed Trees, MBIT*)的移动机器人路径规划算法以降低路径规划时间及路径长度。该算法包含多知情集生成及路径优化两个步骤。首先,基于广义维诺图生成移动机器人启发式无碰撞参考路径;之后,基于批量知情树(Batch Informed Trees, BIT*)及初始参考路径提出并构建多知情集搜索方法,进而移动机器人路径规划的采样区域并提高路径搜索效率。以此为基础,为避免现有批量知情树算法中采样点的不均匀分布问题,根据障碍物与知情集分布引入偏置采样算法,规划出狭窄环境下移动机器人的搜索时间与长度最优路径;为证明算法有效性,对提出的多批量知情树算法进行理论分析,结果表明该算法具有概率完备性及渐进最优性且计算复杂度及存储空间具有可测性;同时,开发提出的多批量知情树算法软件模块,并将其集成到机器人操作系统;为进一步对算法进行验证,在典型地图下将提出的多批量知情树路径规划算法与目前常用的基于采样的路径规划算法进行仿真研究与性能对比,并在典型地图下对算法开展真机实验研究。结果表明,提出基于多批量知情树的移动机器人路径规划算法在路径长度与规划时间具有显著优势,并具有可实现性。

    Abstract:

    The multi-batch informed trees (MBIT*) algorithm is proposed for mobile robot path planning. The algorithm integrates multiple informed subset generation and path optimization to reduce path planning time and path length. First, the generalized voronoi diagram (GVD) is utilized to generate a heuristic initial collision-free reference path. Then, a multi-informed subset exploration method is constructed to reduce the sampling range and improve the convergence efficiency based on batch informed trees (BIT*) and the reference path. On this basis, to overcome the problem of uneven distribution of sampling points in existing BIT* algorithm, a biased Gaussian sampling strategy based on the distribution of obstacles and the informed subset is leveraged to obtain the optimal path in narrow environment. The theoretical analyses confirm that the proposed algorithm exhibits probabilistic completeness and asymptotic optimality, while also maintaining measurable computational complexity and storage requirements. Furthermore, MBIT* has been developed as a package to be integrated in the robot operating system (ROS). To further validate its effectiveness, simulation studies and performance comparisons with other prevalent sampling-based path planning algorithms were conducted in typical map scenarios. Furthermore, the real-world experiments under identical environmental conditions were carried out. Results indicate that the proposed algorithm offers obvious advantages in terms of path length and planning time, and is feasible for implementation.

    参考文献
    相似文献
    引证文献
引用本文

陈正升,田楚开,刘凯旋,王雪松,程玉虎,陈彦杰.基于MBIT的移动机器人渐进最优路径规划[J].仪器仪表学报,2025,46(5):352-364

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-12
  • 出版日期:
文章二维码