基于ARMA模型的原子干涉陀螺噪声滤波方法
DOI:
CSTR:
作者:
作者单位:

1.中国航空工业集团公司西安飞行自动控制研究所西安710076; 2.量子传感与定位导航授时 技术航空科技重点实验室西安710076

作者简介:

通讯作者:

中图分类号:

TH824

基金项目:

国家自然科学基金(U2341246)项目资助


Filtering methods of AIG random noise based on the ARMA model
Author:
Affiliation:

1.AVIC Xi′an Flight Automatic Control Research Institute, Xi′an 710076, China; 2.Aviation Key Laboratory of Science and Technology on Quantum Sensing and Positioning Navigation Timing, Xi′an 710076, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    原子干涉陀螺仪作为下一代超高精度惯性传感器方案之一,在国防和基础科研领域具有重要应用价值和发展前景,但其复杂的噪声特性严重制约了其实际性能。针对这一关键性问题,提出了一种基于时间序列分析的ARMA模型与卡尔曼滤波相结合的噪声抑制方法,旨在绕过复杂的噪声源物理建模环节,直接对陀螺输出信号进行整体建模与滤波处理。首先,通过一阶差分预处理的方式使陀螺输出数据满足ARMA模型的平稳性要求,采用AIC以及BIC准则经计算与对比后确定最优ARMA(2,1)模型参数。在此基础上,重点设计了量测噪声自适应卡尔曼滤波算法,通过实时估计量测噪声方差来动态调整噪声协方差矩阵,有效解决了传统定参滤波器的参数固化问题。对长达13 h的原子干涉陀螺输出数据进行处理与分析,实验结果表明,所提出的自适应卡尔曼滤波显著提升了陀螺性能:零偏稳定性从0.076 6°/h提升至0.055 0°/h(提升幅度可达28.2%),短期灵敏度优化26.7%,长期稳定性改善20.1%,这些改进效果显著优于定参滤波(仅提升8%)。此外,与非模型滤波方法(如低通滤波和小波去噪)相比,自适应卡尔曼滤波在模型匹配条件下展现出更优的噪声抑制效果。该研究提出的这一方法为解决原子干涉陀螺复杂噪声建模困难、提升其实际应用性能提供了一个切实可行的有效途径和技术方案。

    Abstract:

    The atomic interferometer gyroscope (AIG), as one of the next-generation ultra-high-precision inertial sensor solutions, holds significant application value and potential development in defense and fundamental scientific research. However, its complex noise characteristics severely limit its actual performance. To address this critical issue, this article proposes a noise suppression method combining an ARMA model based on time series analysis with the Kalman filtering, aiming to bypass the complex physical modeling of noise sources and directly perform holistic modeling and filtering on the gyroscope′s output signal. First, the gyroscope output data are preprocessed via first-order differencing to meet the stationarity requirement of the ARMA model. The optimal ARMA (2,1) model parameters are determined through calculation and comparison using the AIC and BIC criteria. On this basis, an adaptive Kalman filtering algorithm for measurement noise is designed, which dynamically adjusts the noise covariance matrix by estimating the measurement noise variance in real time, effectively overcoming the parameter rigidity issue of traditional fixed-parameter filters. Experimental results from processing and analyzing 13 hours of atomic interferometer gyroscope output data demonstrate that the proposed adaptive Kalman filtering significantly enhances gyroscope performance. The bias stability improves from 0.076 6°/h to 0.055 0°/h (a 28.2% enhancement), the short-term sensitivity is optimized by 26.7%, and the long-term stability is improved by 20.1%. These improvements are notably superior to those of fixed-parameter filtering (only an 8% improvement). Furthermore, compared with non-model-based filtering methods (such as low-pass filtering and wavelet denoising), the adaptive Kalman filter exhibits superior noise suppression under model-matching conditions. The proposed method provides a practical and effective technical solution to overcome the challenges of complex noise modeling in atomic interferometer gyroscopes and enhance their real-world application performance.

    参考文献
    相似文献
    引证文献
引用本文

牛克骁,刘元正,王宇晨,黄晨煜.基于ARMA模型的原子干涉陀螺噪声滤波方法[J].仪器仪表学报,2025,46(9):72-82

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-22
  • 出版日期:
文章二维码