考虑动态因素影响的机器人磨削表面粗糙度预测
DOI:
CSTR:
作者:
作者单位:

1.长安大学道路施工技术与装备教育部重点实验室西安710064; 2.长三角哈特机器人产业技术研究院 芜湖241007; 3.埃夫特智能机器人股份有限公司芜湖241060; 4.安徽工程大学计算机与信息学院芜湖241000; 5.哈尔滨工业大学机器人研究所哈尔滨150001; 6.北京理工大学机械与车辆学院北京100081

作者简介:

通讯作者:

中图分类号:

TP242.2TH161+.1

基金项目:

国家自然科学基金面上项目(52275005)、中央高校基本科研业务费专项资金项目(300102253201)、中国博士后科学基金项目(2024M760002)、安徽博士后科研项目(2023B675)、芜湖市重点研发与成果转化项目(2023yf044)资助


Dynamic factor-influenced surface roughness prediction in robotic grinding
Author:
Affiliation:

1.Key Laboratory of Road Construction Technology and Equipment, Ministry of Education, Chang′an University, Xi′an 710064, China; 2.Yangtze River Delta HIT Robot Technology Research Institute, Wuhu 241007, China; 3.EFORT Intelligent Robot, Co., Ltd., Wuhu 241060, China; 4.School of Computer and Information, Anhui Polytechnic University, Wuhu 241000, China; 5.Robotics Institute of Harbin Institute of Technology, Harbin 150001, China; 6.School of Machanical Engineering, Beijing Institute of Technology, Beijing 100081, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机器人磨削过程受到动态因素与静态因素的综合影响,具有复杂耦合、高度时变非线性等动态特性。为解决动态因素特征选择困难与仅考虑静态因素致使表面粗糙度预测精度低的问题,结合深度学习技术,提出一种考虑动态因素影响的机器人磨削表面粗糙度预测方法。首先,利用卷积神经网络自动提取磨削过程中动态因素的空间特征,捕捉机器人磨削的复杂动态行为;通过双向长短期记忆网络从获得的空间特征中提取时序特征,表征机器人磨削的动态变化;引入注意力机制实现空间特征、时序特征和静态因素的自动权重分配;利用改进的鲸鱼优化算法自适应优化双向长短期记忆网络的超参数,提高收敛速度和适应机器人磨削动态变化。其次,根据所提预测方法,构建一种考虑动态因素影响的IWOA-CNN-BiLSTM-Attention表面粗糙度预测模型。再次,开展机器人磨削加工实验,将提取的动态因素空间特征和时序特征、采集的静态因素和表面粗糙度测量值归一化处理,构建实验数据集。最后,将实验数据集输入预测模型进行模型训练,实现同时考虑动态因素和静态因素的机器人磨削表面粗糙度预测;并通过对比实验验证所提预测方法的有效性,其对应预测模型的平均绝对百分比误差、均方根误差和决定系数分别为0.027 6、0.029 5和0.998 8,与对比预测模型相比,预测精度分别提高17.14%、13.65%和21.35%。

    Abstract:

    The robotic grinding process is affected by both dynamic and static factors and has dynamic characteristics such as complex coupling and high time-varying nonlinearity. To solve the problems of difficult feature selection of dynamic factors and low prediction accuracy of surface roughness caused by only considering static factors, a prediction method of surface roughness of robotic grinding considering the influence of dynamic factors is proposed by combining deep learning technology. Firstly, the convolutional neural network is used to automatically extract the spatial features of dynamic factors in the grinding process, and capture complex dynamic behaviors of robotic grinding. The temporal features are extracted from the obtained spatial features through the bidirectional long short-term memory network to characterize the dynamic changes of robotic grinding. The attention mechanism is introduced to realize the automatic weight distribution of spatial features, temporal features and static factors. The improved whale optimization algorithm is used to adaptively optimize the hyperparameters of the bidirectional long short-term memory network to improve the convergence speed and adapt to the dynamic changes of robotic grinding. Secondly, according to the proposed prediction method, an IWOA-CNN-BiLSTM-Attention surface roughness prediction model considering the influence of dynamic factors is formulated. Thirdly, the robotic grinding experiment is carried out. The spatial and temporal characteristics of the extracted dynamic factors, the collected static factors, and the measured values of surface roughness are normalized to construct the experiment dataset. Finally, the experimental dataset is input into the prediction model for model training, and the surface roughness prediction of robotic grinding considering both dynamic and static factors is realized. The effectiveness of the proposed method is evaluated by comparative experiments. The mean absolute percentage error, root mean square error, and coefficient of determination of the corresponding prediction model are 0.027 6, 0.029 5, and 0.998 8, respectively. Compared with the comparison prediction model, the prediction accuracy is improved by 17.14%, 13.65%, and 21.35%, respectively. compared with the comparison prediction model.

    参考文献
    相似文献
    引证文献
引用本文

郭万金,郝钦磊,徐明坤,曹雏清,赵立军,王力.考虑动态因素影响的机器人磨削表面粗糙度预测[J].仪器仪表学报,2025,46(3):110-122

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码