基于RTSR-RRT*算法的机械臂路径规划
DOI:
CSTR:
作者:
作者单位:

1.长春理工大学电子信息工程学院长春130022; 2.长春理工大学吉林省智能机器人高校协同创新中心 长春130022; 3.长春理工大学智能复合机器人吉林省校企联合技术创新实验室长春130022

作者简介:

通讯作者:

中图分类号:

TH134TP242

基金项目:

吉林省教育厅产业化培育项目(JJKH20240940CY)、吉林省科技发展计划项目(YDZJ202503CGZH002)、长春市科技发展计划项目(24GXYSZZ14)资助


Path planning of robotic arm based on RTSR-RRT* algorithm
Author:
Affiliation:

1.School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China; 2.Jilin Provincial Collaborative Innovation Center for Intelligent Robots, Changchun University of Science and Technology, Changchun 130022, China; 3.Jilin Provincial UniversityEnterprise Joint Technological Innovation Laboratory for Intelligent Hybrid Robots, Changchun University of Science and Technology, Changchun 130022, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统RRT*算法在路径扩展中存在随机采样偏置性差、路径搜索效率低和收敛速度慢等问题,提出一种重定义采样区域RRT*(RTSR-RRT*)算法。首先,在RRT*算法中引入目标偏置策略,降低采样的随机性,增加采样点的偏向性;其次,将扩展节点与目标点的偏移角度及周围障碍物分布的密集程度按占空比转换得到的角度叠加,再以扩展节点为顶点,与目标点连线为平分线,平分两角度之和形成的采样区域,实现对采样区域的重定义,缩小采样空间,提高路径搜索效率;再次,在重定义采样区域进行二次采样,通过目标点固定引力与采样点变引力共同作用,优化新节点生长方向,进一步提高路径扩展的偏向性,加快算法的收敛速度,最终生成规划路径。为验证所提算法的优越性,通过与RRT*算法、informed-RRT*算法、GB-RRT*算法和AEC-RRT*算法进行对比,结果表明:相较RRT*算法,规划时间节省35%,采样点数量降低58%;相较informed-RRT*算法,规划时间节省40%,采样点数量降低50%;相较GB-RRT*算法,规划时间节省29%,采样点数量降低54%;相较AEC-RRT*算法,规划时间节省31%,采样点数量降低53%。最后,利用机械臂测试平台对所规划路径进行了运动测试实验,进一步验证了所提算法的有效性。

    Abstract:

    In response to the issues of poor random sampling bias, low path search efficiency, and slow convergence speed in the path expansion of the traditional RRT* algorithm, a redefined sampling region RRT* (RTSR-RRT*) algorithm is proposed. Firstly, a target bias strategy is introduced into the RRT* algorithm to reduce the randomness of sampling and increase the bias of sampling points. Secondly, the offset angle between the expansion node and the target point, along with the density of surrounding obstacle distribution, is converted into an angle based on the duty cycle. This angle is then superimposed, and the expansion node is used as the vertex, with the line connecting to the target point as the bisector, to bisect the sum of the two angles, thereby redefining the sampling region. This redefinition narrows the sampling space and enhances the efficiency of path search. Furthermore, a secondary sampling is conducted within the redefined sampling region. By leveraging the fixed gravitational force of the target point and the variable gravitational force of the sampling points, the growth direction of new nodes is optimized, further increasing the bias of path expansion and accelerating the convergence speed of the algorithm, ultimately generating the planned path. To validate the superiority of the proposed algorithm, comparisons were made with the RRT*, informed-RRT*, GB-RRT* and AEC-RRT* algorithms. The results indicate that compared to the RRT* algorithm, planning time is reduced by 35%, and the number of sampling points is decreased by 58%; compared to the informed-RRT* algorithm, planning time is reduced by 40%, and the number of sampling points is decreased by 50%; compared to the GB-RRT* algorithm, planning time is reduced by 29%, and the number of sampling points is decreased by 54%; and compared to the AEC-RRT* algorithm, planning time is reduced by 31%, and the number of sampling points is decreased by 53%. Finally, the planned path was tested on a robotic arm platform, further verifying the effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

刘小松,康磊,单泽彪,苏成志,刘云清.基于RTSR-RRT*算法的机械臂路径规划[J].仪器仪表学报,2025,46(3):65-73

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码