热辅助条件下微织构刀具铣削力预测方法研究
DOI:
CSTR:
作者:
作者单位:

哈尔滨理工大学机械动力工程学院哈尔滨150080

作者简介:

通讯作者:

中图分类号:

TH140.7TH117

基金项目:

黑龙江省自然科学基金(LH2024E083)、国家自然科学基金(52475445)项目资助


Research on the prediction method of milling force for micro-textured tools under thermally-assisted conditions
Author:
Affiliation:

School of Mechanical Power Engineering, Harbin University of Science and Technology, Harbin 150080, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    刀具表面织构化处理能够显著改善刀具的切削性能。但激光加工有着急速升温与骤冷的加工特点,这会导致重熔层堆叠和微裂纹等问题。针对上述问题,引入热辅助激光加工技术。由于钛合金是难加工材料,因此铣削过程中刀具承受较大的铣削力,这会导致机械系统的动态响应及振动,进而影响刀具寿命和加工表面质量。因此,准确预测铣削力可以及时调整切削参数,在保证加工质量的同时,使铣削力处于合理范围,从而提高加工效率、降低刀具磨损。综上,以硬质合金球头铣刀为研究对象,将热辅助工艺与激光加工技术相结合,搭建铣削试验平台,提出一种基于蜣螂算法(DBO)优化变分模态分解(VMD)参数,并结合小波包阈值降噪(WPT)的方法来对原始信号进行降噪处理;使用希尔伯特-黄变换(HHT)进行时频分析,探讨不同热辅助温度下的刀具铣削性能变化规律。在此基础上,结合贝叶斯优化(BO)、卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)以及多头注意力机制(Multihead-Attention),建立回归分析模型用于实时监测和预测铣削力;通过验证,该模型在训练集上的R2值达到了0.996 7,而在测试集上R2值达到了0.991 94,证明了该模型的准确性。为微织构制备过程中的缺陷修复提出了一种新方法,同时为钛合金铣削加工中的铣削力预测提供了一种有效的方法。

    Abstract:

    The texturing of the tool surface can significantly improve the cutting performance of the tool. However, laser processing is characterized by rapid heating and quenching, which can lead to problems such as remelting layer stacking and microcracking. In order to solve the above problems, heat-assisted laser processing technology is introduced in this paper. Since titanium alloy is a difficult-to-machine material, the tool is subjected to large milling forces during the milling process, which leads to the dynamic response and vibration of the mechanical system, which in turn affects the tool life and the machined surface quality. Therefore, accurate prediction of the milling force can adjust the cutting parameters in time, ensure the machining quality at the same time, and make the milling force in a reasonable range, to improve the processing efficiency and reduce tool wear.In summary, this study takes the cemented carbide ball nose milling cutter as the research object, combines the heat-assisted process and laser processing technology, builds a milling test platform, and proposes a method based on the dung beetle algorithm (DBO) to optimize the variational mode decomposition (VMD) parameters, and combines the wavelet packet threshold noise reduction (WPT) method to denoise the original signal. The time-frequency analysis was carried out by using the Hilbert-Huang transform (HHT) to explore the variation of tool milling performance under different thermal auxiliary temperatures. On this basis, combined with Bayesian optimization (BO), convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM) and multihead-attention mechanism, a regression analysis model is formulated for real-time monitoring and prediction of milling force. Through verification, the R2 value of the model reaches 0.996 7 on the training set and 0.991 94 on the test set, which proves the accuracy of the model.This study proposes a new method for defect repair in the process of microtexture preparation and provides an effective method for the prediction of milling force in titanium alloy milling.

    参考文献
    相似文献
    引证文献
引用本文

佟欣,王佰艺,李鑫宇,杨树财.热辅助条件下微织构刀具铣削力预测方法研究[J].仪器仪表学报,2025,46(3):274-287

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码