基于动态寻优蚁群算法的移动机器人路径规划
DOI:
CSTR:
作者:
作者单位:

1.哈尔滨理工大学自动化学院哈尔滨150080; 2.黑龙江省复杂智能系统与集成重点实验室哈尔滨150080

作者简介:

通讯作者:

中图分类号:

TH166TP242

基金项目:


Path planning of mobile robot based on the dynamic optimization ant colony algorithm
Author:
Affiliation:

1.School of Automation, Harbin University of Science and Technology, Harbin 150080, China; 2.Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, Harbin 150080, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    路径规划算法是移动机器人研究的关键环节,蚁群算法正是较为成熟的一种算法,针对移动机器人路径规划算法所存在的收敛速度慢,转折点多,稳定性差等问题,提出了一种改进的动态寻优蚁群算法(IDOACO),并通过3种措施进行改进。首先,设置带有方向指引的启发式信息,通过角度引导因子增强路径规划的目的性;其次,在伪随机状态转移概率中引入障碍排除因子和安全系数,提高路径的安全性;然后,提出多目标评价函数,平衡路径长度和能源损耗,实现路径规划的全局优化;最后,搭建动态避障调整模块,实时评估和调整路径,实现即时动态避障功能。将IDOACO算法进行实验对比,实验结果表明,在复杂地图环境下,IDOACO算法相较于现有算法,平均路径长度提升了约4.63%和11.78%,收敛速度标准偏差分别提高了55.21%和66.27%,实验表明IDOACO算法生成的最短路径不仅收敛更快,转弯次数更少,且具有更高的稳定性和收敛精度,随后成功验证了动态避障效果,最后将改进的算法应用于ROSMASTER-X3移动机器人,设置不同的目标点进行实际路径规划,实验结果表明,该算法可有效解决移动机器人路径规划中所面临的问题,具有一定的实际应用价值。

    Abstract:

    The path planning algorithm is a key component in the research of mobile robots. The ant colony algorithm is indeed a relatively mature algorithm. To address the problems existing in the path planning algorithm of mobile robots, such as slow convergence speed, numerous turning points, and poor stability, an improved dynamic optimization ant colony algorithm (IDOACO) is proposed. First, heuristic information with directional guidance is introduced to enhance the purposefulness of path planning through the angle guidance factor. Secondly, an obstacle exclusion factor and safety factor are incorporated into the pseudo-random state transition probability to improve path safety. Furthermore, a multi-objective evaluation function is proposed to balance the path length and energy consumption to achieve global optimization of path planning. Finally, a dynamic obstacle avoidance adjustment module is formulated to assess and adjust the path in real time, enabling instant dynamic obstacle avoidance functionality. Simulation experiments are implemented to compare the IDOACO algorithm. Compared with the existing algorithms, experimental results show that, in a complex map environment, the IDOACO algorithm improves the average path length by approximately 4.63% and 11.78%, and the standard deviation of the convergence speed is increased by 55.21% and 66.27% respectively. Experiments show that the shortest path generated by the IDOACO algorithm not only converges faster, the number of turns is less, but also has higher stability and convergence accuracy. Then, the dynamic obstacle avoidance effect is successfully verified. Finally, the improved algorithm is applied to the ROSMASTER-X3 mobile robot, and different target points are set for actual path planning. Experimental results show that the algorithm can effectively solve the problems faced by the mobile robot in path planning, and has certain practical application value.

    参考文献
    相似文献
    引证文献
引用本文

张彪,李永强.基于动态寻优蚁群算法的移动机器人路径规划[J].仪器仪表学报,2025,46(3):74-85

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码