改进多层自组织映射网络驱动的风电机组状态监测
DOI:
CSTR:
作者:
作者单位:

浙江工业大学机械工程学院杭州310023

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

国家重点研发计划(2022YFE0198900)、国家自然科学基金(62473336)、浙江省自然科学基金(LZ25F030004)项目资助


Wind turbine condition monitoring based on improved multilayer self-organizing map
Author:
Affiliation:

College of Mechanical Engineering, Zhejiang University of Technology,Hangzhou 310023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有风电机组状态监测方法未充分考虑机组与其关键部件间的关联与信息传递问题,提出一种改进多层自组织映射网络驱动的风电机组状态监测方法。首先,采用皮尔逊相关系数对风电机组数据采集与监控系统(SCADA)特征进行选择,将特征信息作为风电机组树状结构的底层节点信息;其次,考虑到风电机组数据的非线性和时序的特点,基于历史数据的学习训练并构建长短期记忆网络(LSTM)模型来预测SCADA特征数值,计算预测残差;随后,使预测残差代替特征信息作为多层自组织映射网络(MLSOM)模型中底层自组织映射网络(SOM)模型的输入构建部件的正常行为模型,基于训练后的SOM模型以最小量化误差作为指标来表征研究对象的健康状态,按照上述方法分别建立发电机、齿轮箱、变流器关键部件的监测模型;然后,将不同关键部件的健康指标融合作为顶层节点信息输入到多层自组织映射网络模型中的顶层SOM模型进行训练,构建机组的正常行为模型,得到机组的健康指标用于整台机组运行状态的监测分析。最后,通过两个风电机组案例分析结果表明,所提方法可有效将部件信息逐级传递并汇集在风电机组上,进而实现整台机组的状态监测。

    Abstract:

    This paper proposes an improved multilayer self-organizing map (MLSOM) network-based method for wind turbine condition monitoring, addressing the lack of consideration for the interrelationship and information transmission between the unit and its key components in existing methods. Initially, the Pearson correlation coefficient is employed to select features from the supervisory control and data acquisition (SCADA) system, with the feature information serving as the input for the wind turbine′s tree structure′s bottom node. Recognizing the nonlinear and timeseries nature of wind turbine data, long short-term memory (LSTM) models are developed and trained using historical data to predict SCADA feature values. The prediction residuals replace the feature information as input to the bottom node of the self-organizing map (SOM) network within the MLSOM model, creating a normal behavior model for each component. The minimum quantization error serves as an indicator for assessing component health using the trained SOM model. Monitoring models are established for key components such as the generator, gearbox, and converter. These component health indicators are then integrated as top-level node information and used as input for the top-level SOM model in the MLSOM to form a normal behavior model for the entire wind turbine, yielding a comprehensive health indicator for condition monitoring. Case study results of two wind turbines demonstrate that the proposed method effectively transmits and aggregates component information step by step, enabling the condition monitoring of the entire wind turbine.

    参考文献
    相似文献
    引证文献
引用本文

金晓航,杨宇辰,喻轩昂.改进多层自组织映射网络驱动的风电机组状态监测[J].仪器仪表学报,2025,46(3):231-241

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码