数据驱动的纹理摩擦建模与触觉渲染方法研究
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学自动化学院南京210044; 2.江苏省智能气象探测机器人工程研究中心南京210044; 3.江苏省大气环境与装备技术协同创新中心南京210044; 4.东南大学仪器科学与工程学院南京210096

作者简介:

通讯作者:

中图分类号:

TH7TP391

基金项目:

国家自然科学基金项目(62473200)、江苏省青年科技人才托举工程项目(JSTJ-2024-195)、江苏省研究生科研与实践创新计划项目(SJCX24_0467)资助


Research on data-driven texture friction modeling and tactile rendering method
Author:
Affiliation:

1.School of Automation,Nanjing University of Information Science & Technology, Nanjing 210044, China; 2.Jiangsu Province Engineering Research Center of Intelligent Meteorological Exploration Robot (CIMER), Nanjing 210044,China; 3.Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing 210044,China; 4.School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    作为纹理的重要触觉感知维度,摩擦特征对于虚拟纹理的触觉真实感有显著影响。已有的研究已经利用传统的物理摩擦模型对表面摩擦进行建模,但这类方法常伴随较高的计算复杂度和参数设定的繁琐性。为了避免复杂的纹理建模过程,并实时预测与虚拟纹理交互时需要向用户反馈的滑动摩擦力,本研究以融合注意力机制的编码器-解码器为主体,建立了一个端到端的纹理摩擦预测模型(TFPM)。该模型以前一段时间摩擦力数据与用户动作信息作为输入,能够高精度地生成实时摩擦力信号,并在应对常见纹理时展现出较强的泛化效果。继而开发了一种具备实时采集操作信息(按压力与滑动速度)功能的触觉设备,通过与Touch设备进行组合来采集与70个真实纹理交互时的数据,并与SENS3数据库一同用于对模型进行训练。为进一步验证模型的泛化能力,针对测试集中的纹理样本进行了性能评估实验。结果表明,模型能够高质量地渲染虚拟纹理的摩擦属性(均方根误差为0.025 7),并能有效地对数据库之外的纹理进行触觉建模。最后,通过心理物理实验确定了各类虚拟纹理摩擦信号的最佳增益参数,并据此开展了3项用户体验实验。实验结果表明,提出的方法获得了当前最高的感知平均相似度评分(625),能够为用户带来更加真实的虚拟纹理交互体验。

    Abstract:

    As an important haptic perception dimension of texture, the friction feature has a significant impact on the haptic realism of virtual textures. Previous studies utilize traditional physical friction models to model surface friction. However, such methods are often accompanied by high computational complexity and cumbersome parameter setting. To avoid complex texture modeling processes and predict real-time sliding friction that needs to be fed back to the user when interacting with virtual textures, this study establishes an end-to-end texture friction prediction model (TFPM) based on an encoderdecoder that integrates attention mechanisms. This model takes friction data from the previous period and the user′s action information as inputs, which can generate real-time friction signals with high accuracy. It shows a strong generalization effect when dealing with common textures. Subsequently, a haptic device with the function of real-time collection of operation information (pressing pressure and sliding speed) is developed. By combining with the Touch device, data was collected when interacting with 70 real textures, and it was used in conjunction with the SENS3 database to train the model. In order to further verify the generalization ability of the model, a performance evaluation experiment is carried out for the texture samples in the test set. The results show that the model can render the frictional properties of virtual textures with high quality (root mean square error is 0.025 7), and can effectively model the tactile textures outside the database. Finally, the optimal gain parameters of various virtual texture friction signals are determined through psychophysical experiments. Based on this, three user experience experiments are carried out. The experimental results show that the proposed method achieves the highest perceived average similarity score currently (6.25), which can bring users a more realistic virtual texture interaction experience.

    参考文献
    相似文献
    引证文献
引用本文

陈大鹏,丁益,娄隽铖,刘佳,宋爱国.数据驱动的纹理摩擦建模与触觉渲染方法研究[J].仪器仪表学报,2025,46(5):339-351

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-12
  • 出版日期:
文章二维码