基于大语言模型的可解释性运动规划方法研究
DOI:
CSTR:
作者:
作者单位:

东南大学仪器科学与工程学院南京210096

作者简介:

通讯作者:

中图分类号:

TH89

基金项目:

国家自然科学基金(61873064)、江苏省重点研发计划(BE2022139)项目资助


Research on interpretable motion planning methods with large language models
Author:
Affiliation:

School of Instrument Science and Engineerning, Southeast University,Nanjing 210096, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于学习的运动规划方法采用数据驱动的策略,从大规模的驾驶经验中学习策略,虽能表现出良好的性能,但因将运动规划视为黑箱问题,牺牲了方法的可解释性,也总会遇到数据集偏差、过拟合以及陷入局部最优等挑战。利用新兴的大语言模型强大的推理能力和解释能力,提出了一个基于大语言模型的自动驾驶运动规划框架,称为LLMs-Driver,来解决基于学习的方法中可解释性差的问题。LLMs-Driver由推理模块、记忆模块和反思模块3部分组成。在推理模块中,提出了重要经验回放算法,综合考虑了经验优先级和场景相似性两个影响因素,以提高LLMs-Driver的学习效率和性能。在记忆模块中,提出了改进后的先进先出经验存储算法,以保证经验的有效性和新颖性,有助于LLMs-Driver学习到最新最好的策略。同时,为了充分增强自动驾驶运动规划模型的透明度和可信度,采用“三步思维链”的方法,将推理和反思过程分别划分为3个步骤并配有解释性文字。最后,在Highway-env仿真平台上对LLMs-Driver进行闭环自动驾驶实验。实验结果表明,LLMs-Driver有着显著的可解释性和运动规划能力,任务成功步数的中值最高提升至基线算法的2.19倍,并支持根据驾驶人的意图设置不同的驾驶风格。

    Abstract:

    The learning-based motion planning approach uses a data-driven policy trained on large-scale driving experiences and have demonstrated good performance. However, these methods often treat motion planning as a black-box problem, resulting in limited interpretability. They also face challenges such as dataset bias, overfitting, and getting stuck in a local optimum. In this paper, we exploit the powerful inference and interpretation capabilities of emerging large language models to propose a large language model-based motion planning framework for autonomous driving, called LLMs-Driver, to address the problem of poor interpretability in learning-based approaches. LLMs-Driver consists of three parts, namely, the reasoning module, the memory module, and the reflection module. In the reasoning module, we propose the important experience playback algorithm, which integrates the two influencing factors of experience priority and scene similarity, to improve the learning efficiency and performance of the LLMs-Driver. In the memory module, we propose an improved first-in-first-out experience storage algorithm to ensure the validity and novelty of the experience, ensuring that LLMs-Driver continuously learns from the most recent and effective strategies. Meanwhile, in order to fully enhance the transparency and credibility of the self-driving motion planning model, the ‘three-step chain of thought’ method is adopted, which divides the inference and reflection process into three steps, each accompanied by explanatory textual reasoning. Finally, we validate LLMs-Driver through closed-loop autonomous driving experiments on the Highway-env simulation platform. The experimental results show that LLMs-Driver has significant interpretability and motion planning capabilities, with the median number of successful steps on a task increased up to 2.19 times of the baseline algorithm. Additionally, it supports the customization of different driving styles based on the driver′s intention.

    参考文献
    相似文献
    引证文献
引用本文

陈熙源,刘炜焱,聂姝涵,经纬铭.基于大语言模型的可解释性运动规划方法研究[J].仪器仪表学报,2025,46(10):63-73

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码