基于MIGJO的随钻重力加速度在线提取
DOI:
CSTR:
作者:
作者单位:

1.河南理工大学电气工程与自动化学院焦作454000; 2.河南省煤矿装备智能检测与控制重点实验室焦作454003

作者简介:

通讯作者:

中图分类号:

TH741TE927

基金项目:

河南省自然科学基金(232300421152)、国家自然科学基金(41672363)项目资助


Online extraction of acceleration of gravity while drilling based on MIGJO
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China; 2.Henan Key Laboratory of Intelligent Detection and Control of Coal Min Equipment, Jiaozuo 454003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为获得随钻重力加速度,研究了用磁惯性金豺优化算法(MIGJO)在线提取重力加速度问题。首先对随钻振动信号特性进行分析,建立随钻重力提取模型,并把各种非重力加速度整理为解向量;其次,根据随钻磁惯性传感器的输出特性,给出理想重力加速度的输出目标函数,以及重力夹角和钻具径切向皮尔逊系数约束条件;然后,在金豺优化(GJO)的基础上,针对随钻中不同非重力加速度的变化特性,利用上一次解向量进行逐维动态尺度随机游走的种群初始化;并利用重力模值相对误差和三角函数设计重力因子平衡算法的全局搜索和局部开发;此外,根据当前解的信息交互因子和适应度值设计攻击防御系数协调磁惯性金豺的攻击防御行为,利用最优解和次优解位置的攻击搜索策略提高重力提取精度和速度,利用上下界和突变点位置的防御搜索策略避免陷入局部最优;然后利用当前重力解与当地重力设计相似度来动态更新解向量位置,进一步提高重力提取精度。最后,设计模拟钻进和实钻实验,结果表明:使用MIGJO提取的重力加速度精度得到明显提升,解算的井斜角和工具面角绝对误差平均值分别控制在0.63°和0.8°以内,该方法可有效提高随钻重力加速度的提取精度。

    Abstract:

    To extract gravitational acceleration during drilling, the Magnetic Inertia Golden Jackal Optimization (MIGJO) algorithm is employed. Initially, the vibration characteristics during drilling are analyzed, and a gravity extraction model is established by categorizing non-gravity accelerations into solution vectors. Then, based on the output characteristics of the magnetic inertial sensor during drilling, an objective function for the ideal gravitational acceleration is defined, along with constraint conditions such as the gravity angle and tangent Pearson coefficient of the drilling tool diameter. Utilizing the Golden Jackal Optimization (GJO) algorithm, the solution vector from the previous step initializes a dynamically scaled random walk population, reflecting the random variations of non-gravity accelerations during drilling. A gravity factor balance algorithm is developed to perform global search and local refinement using the relative error of gravity modulus and trigonometric functions. Additionally, an attack-defense coefficient is introduced to manage the magnetic inertia golden jackal′s behavior, optimizing both attack and defense strategies to improve gravity extraction accuracy and speed. The attack strategy, based on the positions of the optimal and suboptimal solutions, enhances accuracy, while the defense strategy, utilizing upper and lower bounds and mutation points, helps the algorithm avoid local optima. The similarity between the current gravity solution and local gravity design is used to dynamically adjust the solution vector′s position, further refining the accuracy of gravity extraction. Simulated and real-world drilling experiments demonstrate that MIGJO significantly improves the accuracy of gravitational acceleration extraction, with average absolute errors in inclination and tool face angle controlled within 0.63° and 0.8°, respectively. This method effectively enhances the precision of gravity acceleration extraction during drilling.

    参考文献
    相似文献
    引证文献
引用本文

杨金显,杨潇健,蔺钰柯,张颖.基于MIGJO的随钻重力加速度在线提取[J].仪器仪表学报,2025,46(3):337-344

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码