不同地质条件下盾构机掘进速度预测方法
DOI:
CSTR:
作者:
作者单位:

1.武汉工程大学电气信息学院武汉430205; 2.中国葛洲坝集团股份有限公司武汉430030; 3.武汉大学水利水电学院武汉430072; 4.武汉理工大学航运学院武汉430063

作者简介:

通讯作者:

中图分类号:

TH6TP312TP3.05 U455.43

基金项目:

湖北省自然科学基金(2022CFB313)项目资助


Prediction of tunneling speed of shield machine under varying geological conditions
Author:
Affiliation:

1.School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China; 2.China Gezhouba Group Co., Ltd., Wuhan 430030, China; 3.School of Water Resources and Hydropower, Wuhan University, Wuhan 430072, China; 4.School of Navigation, Wuhan University of Technology, Wuhan 430063, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    盾构机掘进性能受不同地质条件影响明显。该研究以电驱土压平衡盾构机为对象,统计了961环3 761 006条掘进数据,包括砂质黏性土层等6种地质组合以及对应的盾构机掘进参数。通过相关性分析,确定与掘进速度紧密相关的特征变量,包括总推力、同步注浆量和泡沫压力等。然后,针对实际盾构工程存在数据分布不均衡问题,对原始数据高斯重采样,生成包含19 950个有效样本的数据集。随后,提出了一种基于Kolmogorov-Arnold Network(KAN)的盾构机掘进速度预测方法,KAN模型通过多层次复合函数的组合逼近非线性关系,将多因素耦合的非线性关系又近似分解为一系列单变量函数组合,在确保模型预测精度的同时,极大提高计算效率。以深圳至大亚湾地铁盾构工程为例,开展实验论证,结果表明:与卷积神经网络(CNN)、长短时记忆网络(LSTM)等模型相比,KAN在处理高维数据和非线性耦合关系方面表现出优越性能,其预测结果能够精确拟合实测数据。在地质条件较为单一(如全风化混合花岗岩、土状强风化混合花岗岩)的预测误差较低,平均误差控制在5.12%~7.02%,而在混合地层中预测误差有所增大,但总体平均误差仍控制在15%以内。该方法为复杂地质条件下盾构机施工优化提供了有力的决策支持。未来将地质空间分布信息以序列形式引入模型,并增加刀盘磨损的输出预测,为盾构施工的智能化管理提供更加全面的解决方案。

    Abstract:

    TThe tunneling performance of shield machines is greatly influenced by varying geological conditions. This study investigates an electrically-driven earth pressure balance shield machine, analyzing 3,761,006 tunneling data points across 961 rings. The dataset includes six geological combinations, such as sandy cohesive soil layers, along with corresponding tunneling parameters. Through correlation analysis, key features strongly related to tunneling speed, including total thrust, sync grouting volume, and foam pressure, were identified. To address the issue of uneven data distribution in practical tunneling projects, Gaussian resampling was applied, resulting in a dataset with 19 950 valid samples. A tunneling speed prediction method for shield machines based on the Kolmogorov-Arnold Network (KAN) was then proposed. The KAN model approximates nonlinear relationships by combining multi-level composite functions, breaking down the complex nonlinear interactions into simpler univariate function combinations. This approach ensures high prediction accuracy while significantly improving computational efficiency. Using the Shenzhen-to-Daya Bay Metro Shield Tunneling Project as a case study, experiments showed that the KAN model outperforms CNN and LSTM models in handling high-dimensional data and nonlinear coupling relationships. The prediction results align closely with measured data, with prediction errors ranging from 5.12% to 7.02% in simpler geological conditions (such as completely weathered mixed granite and strongly weathered mixed granite). In mixed geological layers, the prediction errors are higher, but the overall average error remains below 15%. This method offers strong decision support for optimizing shield machine operations under complex geological conditions. In the future, geological spatial distribution data will be incorporated into sequential modeling, and cutterhead wear prediction will be added to provide a more comprehensive intelligent management solution for shield tunneling.

    参考文献
    相似文献
    引证文献
引用本文

王毓灿,元海文,孙齐,杨磊,肖长诗.不同地质条件下盾构机掘进速度预测方法[J].仪器仪表学报,2025,46(3):30-40

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码