基于sEMG的人机交互随动控制研究
DOI:
CSTR:
作者:
作者单位:

1.哈尔滨理工大学自动化学院哈尔滨150080; 2.哈尔滨理工大学黑龙江省复杂智能系统与 集成重点实验室哈尔滨150080; 3.中兵智能创新研究院有限公司北京100072

作者简介:

通讯作者:

中图分类号:

TP24TH39

基金项目:

国家自然科学基金面上项目(52175012)、国家自然科学基金青年科学基金项目(52205035)、中国博士后基金面上项目(2023MD744206)资助


Human-computer interaction follow-up control based on sEMG
Author:
Affiliation:

1.School of Automation, Harbin University of Science and Technology, Harbin 150080, China; 2.Heilongjiang Provincial Key Laboratory of Complex Intelligent Systems and Integration, Harbin University of Science and Technology, Harbin 150080, China; 3.Zhongbing Intelligent Innovation Research Institute Co.,Ltd., Beijing 100072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对人机交互条件下机械臂抓取任务中的随动性较差,导致操作流畅性较低、轨迹跟踪不理想等问题,提出了一种基于表面肌电信号(sEMG)的人机交互随动控制方法。首先,利用双gForcePro+臂环IMU数据获取肩、肘关节角度,并结合sEMG信号的特征提取,通过PSO-GRNN模型估计腕关节角度,建立人手臂与机械臂的映射关系,实现机械臂的随动控制。实验结果表明,PSO-GRNN模型在腕关节角度估计中的均方根误差(RMSE)相比传统GRNN方法分别降低了62.39%和55.18%,有效提升了控制精度。为进一步提升抓取任务中的控制精度,提出了一种基于CNN-LSTM网络的手势识别方法,实现夹爪的实时控制。同时,结合sEMG信号与实际刚度的映射关系,构建了一种人体上肢刚度估计算法,并将刚度调节信息引入自适应RBF-NFTSMC控制器,实现机械臂的柔顺控制。实验结果表明,优化后的RBF-NFTSMC方法相比传统NFTSMC方法,在轨迹跟踪误差上降低了约30-2%,并增强了系统的抗干扰能力。此外,为验证sEMG变刚度控制策略的有效性,搭建了基于双gForcePro+臂环和UR3e机械臂的实验平台。实验结果表明,基于sEMG变刚度控制的机械臂末端轨迹更接近目标轨迹,相较固定刚度控制方法,轨迹跟踪误差降低了24.6%,并改善机械臂在与物体交互时的柔顺性,提升了机械臂的稳定性、适应性。

    Abstract:

    To solve the problems of poor follow-up in the gripping task of the manipulator under the condition of human-computer interaction, resulting in low operation fluency and unsatisfactory trajectory tracking, a human-computer interaction follow-up control method based on surface electromyography (sEMG) is proposed. Firstly, the angle of shoulder and elbow joints are obtained by using the IMU data of dual gForcePro+ arm rings. By combining this data with the feature extraction of sEMG signals, the angle of wrist joints is estimated by the PSO-GRNN model, establishing a mapping relationship between the human arm and the robotic arm to realize the follow-up control. Experimental results show that the Root Mean Square Error (RMSE) of the PSO-GRNN model in wrist joint angle estimation is reduced by 62-39%and 55-18%, respectively, compared with the traditional GRNN method, effectively improving the control accuracy. To further enhance the control accuracy in the grasping task, a gesture recognition method based on a CNN-LSTM network is proposed to realize the real-time control of the gripper. At the same time, a stiffness estimation algorithm for the human upper limb is constructed by leveraging the mapping relationship between sEMG signals and actual stiffness. The stiffness adjustment information is then introduced into the adaptive RBF-NFTSMC controller to realize the compliant control of the robotic arm. Experimental results show that the optimized RBF-NFTSMC method reduces the trajectory tracking error by about 30.2% compared with the traditional NFTSMC method, enhancing the anti-interference ability of the system. In addition, in order to verify the effectiveness of the sEMG variable stiffness control strategy, an experimental platform based on dual gForcePro+ arm rings and UR3e robotic arms was built. Experimental results show that the end trajectory of the manipulator based on sEMG variable stiffness control was closer to the target trajectory, with trajectory tracking error reduced by 24.6% compared with the fixed stiffness control method. Furthermore, the flexibility of the manipulator in object interactions was improved, leading to improved stability and adaptability.

    参考文献
    相似文献
    引证文献
引用本文

尤波,刘嘉琦,程晨晨,刘宇飞,李佳钰.基于sEMG的人机交互随动控制研究[J].仪器仪表学报,2025,46(3):123-142

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码