超低温铯原子喷泉钟微波腔测试系统研制
DOI:
CSTR:
作者:
作者单位:

1.西安石油大学理学院西安710065; 2.中国科学院国家授时中心西安710600

作者简介:

通讯作者:

中图分类号:

TH89

基金项目:

陕西省重点研发计划(2023-YBGY-402,2024GX-YBXM-240)项目资助


Development of the Ultra-low temperature cesium atomic fountain clock microwave cavity test system
Author:
Affiliation:

1.School of Science, Xi′an Shiyou University, Xi′an 710065, China; 2.National Time Service Center, Chinese Academy of Sciences, Xi′an 710600, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    铯原子喷泉钟是基于原子内部量子跃迁而实现的标准频率信号发生装置,广泛应用于守时系统和其它精密测量领域。超低温铯原子喷泉钟是铯原子工作在液氮(80 K)环境中的新型喷泉钟。当原子周围的温度由300 K降低到80 K时,铯原子喷泉钟的黑体辐射频移缩小187倍,黑体辐射频移的不确定度缩小79倍,微波腔相位频移和背景其他碰撞频移也会得到不同程度的改善。微波谐振腔是超低温铯原子喷泉钟的核心部件。为了使谐振腔的谐振频率和铯原子跃迁频率相近,必须对加工成型的微波谐振腔进行调谐和测试。超低温铯原子喷泉钟的微波谐振腔需要在大气、室温环境中调谐,在真空,超低温环境中使用,热胀冷缩效应引起的谐振腔的参数差别很大。为了检验谐振腔的调谐结果需要实验建立谐振腔的真实工作环境。研制了一套超低温谐振腔测试系统,依据微波谐振腔设计理论,计算了测试系统的工作参数,基于有限元方法建立了测试系统的模型,获取了超低温环境中谐振腔的温度分布。超低温谐振腔测试系统满足谐振腔对均匀温度、真空度和保温性能的所有要求。测试系统的真空度达到10-2 Pa,温度调谐范围为78~86 K,控温精度为002 K。

    Abstract:

    Cesium atomic fountain clocks are standard frequency signal generators based on quantum transitions in atoms, widely utilized in timekeeping systems and other precision measurement applications. The ultra-low-temperature cesium atomic fountain clock represents an advanced version of this technology, operating with cesium atoms in a liquid nitrogen (80 K) environment. Reducing the surrounding temperature from 300 to 80 K leads to a 187-fold decrease in the blackbody radiation frequency shift and a 79-fold reduction in the associated uncertainty. Additionally, improvements in microwave cavity phase frequency shifts and background collision frequency shifts are observed. The microwave resonant cavity, a critical component of the ultra-low-temperature cesium atomic fountain clock, requires tuning and testing to align its resonant frequency with the cesium atomic transition frequency. Although the cavity is tuned under atmospheric, room-temperature conditions, it functions in a vacuum and ultra-low-temperature environment, where thermal expansion and contraction cause significant parameter variations. To validate the tuning process, it is crucial to replicate the actual working conditions of the cavity experimentally. This paper describes the development of an ultra-low-temperature resonant cavity testing system. Using microwave resonant cavity design theory, the system′s working parameters were calculated, and a finite element model was created to simulate the temperature distribution of the cavity in the ultra-low-temperature environment. The testing system meets all necessary requirements for uniform temperature, vacuum level, and insulation performance. Specifically, it achieves a vacuum level of 10-2 Pa, a temperature tuning range from 78 to 86 K, and a temperature control accuracy of 0.02 K.

    参考文献
    相似文献
    引证文献
引用本文

张泽,王心亮,聂帅,郭文阁,张首刚.超低温铯原子喷泉钟微波腔测试系统研制[J].仪器仪表学报,2025,46(3):1-8

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码