机器人搭载双目视觉系统下的工件尺寸检测方法研究
DOI:
CSTR:
作者:
作者单位:

西南交通大学机械工程学院成都610031

作者简介:

通讯作者:

中图分类号:

TH89

基金项目:

四川省科技计划(2021YFG0194)项目资助


Research on workpiece size detection method with binocular vision system carried by robot
Author:
Affiliation:

School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着制造业的快速发展,工件尺寸精度要求日益提高,实现工件三维尺寸的高效精准测量对保障加工质量具有重要意义。针对机械加工工件三维尺寸检测需求,提出一种基于机器人搭载双目视觉系统的检测方法。以法兰盘为典型检测对象,搭建视觉检测系统,并设计基于双目视觉的工件尺寸检测算法流程。针对法兰盘图像易受高光和噪声干扰导致像素值污染的问题,提出一种灰度聚合算法,通过检测并重构污染像素值,显著提升了立体匹配代价计算的抗噪鲁棒性;同时,针对法兰盘图像特征重复或较弱导致的同名点匹配误差较大的问题,设计一种权重自适应计算算法,通过有效表征像素特征,进一步提高了立体匹配的准确度。基于上述研究,构建了融合灰度聚合与权重自适应计算的AD-Census立体匹配优化算法,并通过法兰盘尺寸检测实验,验证了该优化算法的有效性。此外,通过深入分析法兰盘视觉检测中视差误差的传递过程,建立相机测量位姿评价模型,确定了相机的最佳测量位姿,并开展不同测量位姿下的法兰盘尺寸检测实验,验证了最佳测量位姿确定方法的有效性。研究结果表明,所提出的方法能够进一步提高工件尺寸检测的精度,为机械加工工件的三维尺寸检测提供了新的技术手段。

    Abstract:

    As the manufacturing industry rapidly advances, the demand for precise workpiece size measurement continues to grow. Efficient and accurate three-dimensional measurement of workpieces is crucial for ensuring processing quality. This paper proposes a detection method for the three-dimensional size of machined workpieces using a robot equipped with a binocular vision system. A flange plate is chosen as a typical detection object, and a visual detection system is developed along with a corresponding workpiece size detection algorithm based on binocular vision. To address the issue of highlight and noise interference in flange images, which leads to pixel value contamination, a gray-level aggregation algorithm is introduced. This algorithm improves the robustness of stereo matching cost calculations by detecting and reconstructing contaminated pixel values. Additionally, to tackle the challenge of large matching errors caused by weak or repeated image features in the flange, a weight adaptive calculation algorithm is proposed to enhance stereo matching accuracy by effectively characterizing pixel features. Building on this, an AD-Census stereo matching optimization algorithm is developed, combining gray-level aggregation and weight adaptive calculation, with its effectiveness validated through flange size detection experiments. Furthermore, by analyzing the transfer process of parallax errors during flange visual inspection, an evaluation model for camera measurement pose is established, allowing the determination of the optimal measurement pose. Flange size detection experiments under different poses confirm the effectiveness of the proposed pose optimization method. The results show that the proposed method significantly improves workpiece size detection accuracy and offers a new technical approach for three-dimensional size measurement of machined workpieces.

    参考文献
    相似文献
    引证文献
引用本文

王金栋,谢成胜,张行健,郑鹏,唐雷雨.机器人搭载双目视觉系统下的工件尺寸检测方法研究[J].仪器仪表学报,2025,46(3):180-192

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码