融合双编码与元学习的小样本输电线异物检测
DOI:
CSTR:
作者:
作者单位:

华北电力大学电气与电子工程学院北京102206

作者简介:

通讯作者:

中图分类号:

TP391. 4TH183.3

基金项目:


Small sample foreign body detection in power lines based on double coding and meta-learning
Author:
Affiliation:

College of Electrical and Electronic Engineering,North China Electric Power University, Beijing 102206, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    输电线作为电力传输的重要设施,其异物检测是电网巡检维护的重要环节。然而,受限于输电线巡检数据的可获得性和输电线所处环境的复杂性,复杂背景下的小样本数据集输电线异物检测依然是一个挑战。就此提出一种由主编码Swin Transformer网络和次编码卷积神经网络(CNN)构成的基于两阶段元学习训练策略的双编码目标检测网络(ML-DCTDN),该网络的创新点在于:一方面主编码Swin Transformer网络通过2个阶段的元学习训练获得泛化特征提取能力,即第1阶段学习输电线特征,第2阶段学习异物特征,提高其在小样本数据集的目标检测任务中的表现;另一方面该双编码网络分别采用红绿蓝图像和灰度图像的输入方式,通过分层融合模块(LFM)和特征金字塔网络(FPN)模块实现红绿蓝图像和灰度图像的多模态特征融合,既利用了红绿蓝图像丰富的色彩和纹理信息,又借鉴了灰度图像对光线和细节纹理的鲁棒特性,强化了模型在复杂背景下的抗干扰能力与检测能力。消融实验表明,元学习训练策略明显提高了模型平均准确率(mAP),灰度图像输入方法将mAP提高了至少4%;与SSD、Faster RCNN、YOLOv5以及YOLOv8算法的对比实验表明,小样本数据集的输电线异物检测任务中借鉴元学习策略和双编码网络结构,能明显提高复杂背景下模型的目标检测精度,mAP50和mAP75值分别提高到986%和647%。

    Abstract:

    Foreign body detection is a critical component of power grid inspection and maintenance, as it plays an essential role in power transmission. However, detecting foreign objects in transmission lines with small sample data under complex environmental conditions remains a challenging task. This paper proposes a Meta-Learning-based Double Coding Target Detection Network (ML-DCTDN), combining a Swin Transformer Network and a Convolutional Neural Network (CNN). The innovation of this network lies in two key aspects: firstly, the Swin Transformer network enhances its generalization feature extraction ability through a two-stage meta-learning process. In the first stage, it learns transmission line features, while in the second stage, it focuses on foreign object features, improving performance for target detection tasks on small sample datasets. Secondly, the double coding network uses both RGB and grayscale images as inputs, and employs a Layered Fusion Module (LFM) and a Feature Pyramid Network (FPN) to achieve multi-modal feature fusion. This approach leverages the rich color and texture information of RGB images while also utilizing the robustness of grayscale images against lighting variations and fine details. The model′s anti-interference and detection capabilities are thus strengthened in complex backgrounds. Ablation experiments reveal that the meta-learning strategy significantly improved the Mean Average Precision (mAP), with grayscale image input increasing the mAP by at least 4%. Comparative experiments with SSD, Faster RCNN, YOLOv5, and YOLOv8 algorithms demonstrate that the proposed meta-learning strategy and double coding network structure greatly enhance detection accuracy in foreign body detection tasks for transmission lines with small sample datasets. The mAP50 and mAP75 values achieved were 98.6% and 64.7%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

陈哲煊,高雪莲,宋佳宇,刘毅.融合双编码与元学习的小样本输电线异物检测[J].仪器仪表学报,2025,46(3):193-205

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码