螺栓/铆钉故障的视觉检测方法研究进展
DOI:
CSTR:
作者:
作者单位:

1.南京航空航天大学电子信息工程学院南京211106; 2.池州学院机电工程学院池州247000

作者简介:

通讯作者:

中图分类号:

TP391.41TM930.1TH89

基金项目:

国家自然科学基金(61573183)、安徽省高校自然科学研究(2023AH052358,2024AH051365)项目资助


Research progress on visual detection methods for bolt/rivet faults
Author:
Affiliation:

1.College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; 2.College of Mechanical and Electrical Engineering, Chizhou University, Chizhou 247000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    螺栓/铆钉分别作为输电线路、铁路交通、桥梁及飞行器等领域工程应用中不可或缺的连接紧固件,其在受到外界环境因素影响时,不免会出现销钉缺失、螺母松动、螺栓锈蚀及铆钉损伤等故障,准确识别有故障的螺栓/铆钉对保障输电线路、铁路交通、飞行器等安全稳定运行具有重要意义。在海量数据驱动下,基于深度学习的螺栓/铆钉故障检测方法利用卷积神经网络自动逐层学习图像的深层特征,通过训练优化网络模型参数提升特征提取能力和泛化能力,取得了比传统图像处理方法更好的检测结果。文章综述了近十年来基于视觉的螺栓/铆钉故障检测方法的研究进展。首先简述了螺栓/铆钉故障特征及视觉检测面临的挑战;然后依托深度学习技术概述了螺栓/铆钉故障检测方法,从双阶段算法、单阶段算法和级联检测模型3个方面对基于深度学习的螺栓/铆钉故障检测方法进行了总结;随后针对线路类、箱体类、构件类螺栓/铆钉典型应用场景,重点阐述了螺栓/铆钉故障的视觉检测方法;最后针对基于机器视觉的螺栓/铆钉故障检测在数据集、样本标注、小目标检测等方面面临挑战,结合现有的深度学习技术和最近的研究思路,详细分析了基于深度学习的螺栓/铆钉故障检测未来的发展趋势。

    Abstract:

    Bolts and rivets serve as essential fasteners in engineering applications, including transmission lines, railway transportation, bridges, and aircraft. However, exposure to external environmental factors makes them susceptible to various faults, such as missing pins, loose nuts, corrosion, and structural damage. Accurately detecting these faults is crucial for ensuring the safe and stable operation of transmission lines, railway systems, aircraft, and other related infrastructures. Leveraging large-scale data, deep learning-based bolt and rivet fault detection employs convolutional neural networks (CNNs) to automatically extract deep image features through hierarchical learning. By optimizing network parameters, these methods enhance feature extraction and generalization capabilities, yielding superior detection performance compared to traditional image processing techniques. This paper provides a comprehensive review of vision-based bolt and rivet fault detection research over the past decade. It begins by outlining common fault characteristics and the challenges associated with visual inspection. Next, deep learning-based detection approaches are categorized into three main types: two-stage algorithms, one-stage algorithms, and cascaded detection models. The paper then explores visual fault detection methods in key application scenarios, including line-type, box-type, and component-type bolts and rivets. Finally, it discusses challenges in machine vision-based fault detection, such as dataset limitations, sample annotation, and small target detection. By integrating existing deep learning technologies with the latest research advancements, this study presents an in-depth analysis of future development trends in deep learning-based bolt and rivet fault detection.

    参考文献
    相似文献
    引证文献
引用本文

刘传洋,吴一全,刘景景.螺栓/铆钉故障的视觉检测方法研究进展[J].仪器仪表学报,2025,46(3):143-160

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码