基于CT图像的煤矸元素成分分析算法研究
DOI:
CSTR:
作者:
作者单位:

沈阳工业大学信息科学与工程学院沈阳110870

作者简介:

通讯作者:

中图分类号:

TH741TP391.41

基金项目:


Research on coal gangue elemental composition analysis algorithmbased on CT imaging
Author:
Affiliation:

School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对常规煤矸石图像在纹理颜色上区别不大,易受灰尘等噪声干扰,难以通过常规图像得到煤矸石内部结构关键信息以及元素分布占比的问题,构建了可以深入分析煤矸石内部结构的高分辨率成像和抗干扰能力强的煤矸CT图像数据集。并基于深度学习算法对煤矸石常规图像分类识别精度不高的问题,提出了一种基于CT图像的煤矸元素成分分析算法。本算法运用改进的Res-Unet语义分割模型,对CT图像元素区域进行分割,并对其元素区域的占比进行分析,从而实现煤矸石的有效分类识别。算法设计上在Res-Unet编码器中集成高效局部注意力(ELA)模块,使模型更加关注关键信息,同时改进Res-Unet模型的跳跃连接方式来融合不同尺度的信息,有效提升模型的分割性能,确保模型对煤矸石CT图像不同元素区域的精确划分。实验结果表明,改进后的Res-Unet模型对元素区域进行了有效的分割,改进模型元素区域分割mIOU达到了84.48%,通过计算元素区域的占比对煤矸CT图像进行最终的分类,改进模型的煤矸CT图像分类准确率达到94.4%,超过了其他模型的分类准确率,结果表明了基于CT图像的煤矸元素成分分析算法的有效性。基于CT图像的煤矸元素成分分析算法为煤矸石图像分类提供了新的视角和方法,为工厂智能分类抓取煤炭提供了技术支持,推动煤炭行业的智能化和自动化发展进程。

    Abstract:

    To overcome the challenges presented by conventional coal gangue images, which often lack significant textural and color differences and are prone to noise interference (such as dust), making it difficult to extract critical information about their internal structure and elemental distribution through standard imaging methods, a high-resolution CT imaging dataset of coal gangue with strong anti-interference capabilities has been developed. This dataset allows for a more detailed analysis of the internal structure of coal gangue. Furthermore, to address the issue of low classification and recognition accuracy of traditional coal gangue images using deep learning algorithms, a new algorithm for analyzing the elemental composition of coal gangue based on CT images is proposed. The algorithm utilizes an enhanced Res-Unet semantic segmentation model to segment the elemental regions within CT images and analyze their proportions, enabling effective classification and recognition of coal gangue. The model incorporates an efficient local attention (ELA) module within the Res-Unet encoder, allowing it to focus more on important features. Additionally, improvements to the skip connections in the Res-Unet model facilitate better information fusion across different scales, significantly boosting segmentation performance and ensuring accurate delineation of elemental regions in coal gangue CT images. Experimental results demonstrate that the enhanced Res-Unet model successfully segments elemental regions, achieving an mIOU of 84.48%. By calculating the proportions of elemental regions for the final classification of coal gangue CT images, the improved model achieves a classification accuracy of 94.4%, outperforming other models. These results confirm the effectiveness of the proposed algorithm for analyzing the elemental composition of coal gangue based on CT images. This algorithm provides a novel approach and methodology for coal gangue image classification, offering valuable technical support for intelligent coal sorting in factories and promoting the advancement of intelligent and automated systems in the coal industry.

    参考文献
    相似文献
    引证文献
引用本文

吕瑞宏,李大玮,沈红博.基于CT图像的煤矸元素成分分析算法研究[J].仪器仪表学报,2025,46(3):170-179

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码