一种改进平稳小波去噪与扩展卡尔曼系统辨识的动态称量新方法
DOI:
CSTR:
作者:
作者单位:

1.湖南大学电气与信息工程学院长沙410082; 2.湖南师范大学工程与设计学院长沙410081

作者简介:

通讯作者:

中图分类号:

TH715.1+94

基金项目:

国家重点研发计划(2022YFF0605503)项目资助


A novel dynamic weighing method integrating improved stationary wavelet denoising and extended Kalman system identification
Author:
Affiliation:

1.College of Electrical and Information Engineering, Hunan University, Changsha 410082, China; 2.College of Engineering and Design, Hunan Normal University, Changsha 410081, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对在线检重秤在实际工作环境中受机械振动、被测试样自身冲击及外部随机扰动等多重因素影响,导致称重信号被噪声严重污染、称量精度难以满足要求的问题,故提出了一种基于收缩软阈值的改进平稳小波去噪与扩展卡尔曼系统辨识的动态称量新方法。首先,根据称重信号与理想信号的先验知识,采用7层平稳小波变换对称重信号进行多尺度分解,接着针对分解后得到的细节系数,将高频噪声占主导的细节系数d1,k~d4,k置0,并设计一种带收缩因子的软阈值函数对同时包含有用信号与干扰噪声成分的细节系数d5,k~d7,k进行处理,然后利用处理后的细节系数与原始近似系数进行平稳小波逆变换重构称重信号,从而有效抑制各种干扰噪声。最后在此基础上,采用扩展卡尔曼算法进行系统辨识,求解检重秤系统的模型参数,并利用所得模型参数计算被测试样的质量。为验证所提算法的有效性,实验采用5种不同质量的被测试样,分别在30、45、60、75和90 m/min这5种速度下进行多次加载测试,并对测试结果进行分析与比较。实验结果表明,所提算法的称量准确度优于时变低通滤波(TVLPF)算法、自适应预滤波与系统辨识(AID)算法以及自适应预滤波与扩展卡尔曼系统辨识(AEKSI)算法,满足国家标准《GB/T 27739—2011自动分检衡器》对XIII类检重秤的精度要求。

    Abstract:

    During the operation of a checkweigher, its weighing signal is affected by vibrations rising from the mechanical transmission systems, impacts from the measured object and other random disturbances. As a result, the weighing signal is severely contaminated by noise, making it difficult to meet the requirements of national standards. To address this issue, a novel dynamic weighing method based on improved stationary wavelet denoising with a shrinkage soft threshold and extended Kalman system identification is proposed. First, leveraging prior knowledge of the weighing signal and the ideal signal, a seven-layer stationary wavelet transform is applied to the weighing signal for multi-scale decomposition. Next, the high-frequency noise-dominated detail coefficients d1,k~d4,k are set to zero, while a soft-threshold function with a shrinkage factor is applied to process the detail coefficients d5,k~d7,k that contain both useful signal and noise components. Then, the inverse stationary wavelet transform is performed using the processed detail coefficients and the original approximation coefficients to reconstruct the weighing signal, effectively suppressing various interference noises. Following this, the extended Kalman algorithm is employed for system identification to determine the model parameters of the checkweigher system, which are subsequently utilized to calculate the mass of the samples. To validate the effectiveness of the proposed algorithm, experiments were conducted using five samples of different masses at speeds of 30, 45, 60, 75 and 90 m/min, with multiple loading tests performed at each speed, and the results were analyzed and compared. The results demonstrate that the proposed algorithm achieves superior weighing accuracy compared to the time-variant low-pass filter (TVLPF) algorithm, identification-based approach with signal-adaptive prefiltering (AID) algorithm, and signal-adaptive prefiltering with extended Kalman system identification (AEKSI) algorithm. Furthermore, it meets the accuracy requirements for class XIII checkweighers as defined by the national standard “GB/T 27739—2011 Automatic Checkweigher”.

    参考文献
    相似文献
    引证文献
引用本文

龙保鑫,滕召胜,孙彪,林海军,刘涛.一种改进平稳小波去噪与扩展卡尔曼系统辨识的动态称量新方法[J].仪器仪表学报,2025,46(3):41-50

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码