动态环境下基于深度图的无人车激光SLAM算法
DOI:
CSTR:
作者:
作者单位:

1.哈尔滨理工大学自动化学院哈尔滨150080; 2.合肥哈工图南智控机器人有限公司合肥230000

作者简介:

通讯作者:

中图分类号:

TH85 TP242

基金项目:

国家自然科学基金青年项目(62103120)、黑龙江省自然科学基金项目(YQ2024E047)、黑龙江省优秀青年教师基础研究支持计划项目(YQJH2024067)、黑龙江省博士后面上项目(LBH-Z22197)、黑龙江省复合材料高效成型及智能装备技术创新中心开放课题面上项目(HPTIC202204)资助


A laser SLAM algorithm for unmanned vehicles based on depth map in dynamic environment
Author:
Affiliation:

1.School of Automation, Harbin University of Science and Technology, Harbin 150080, China; 2.Hefei HRG Tonan Intelligent Control Robot Co., Ltd, Hefei 230000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对激光SLAM在动态环境下出现精度下降与系统鲁棒性差的问题,故提出一种动态环境下基于深度图的无人车激光SLAM算法。首先,针对激光入射光线贴近地面时,部分地面点云会被误判为动态障碍物的问题,通过角度阈值将激光点云分割为地面点云与非地面点云,排除地面点云的影响。其次,将非地面点云投影为深度图,把三维空间中的点云投影到二维图像上,采用图像领域的方法减少点云数据处理的复杂度。然后,针对稀疏的激光点云不能准确反映真实环境的问题,利用激光雷达的距离信息作为自适应调节深度图的权重设置深度图的分辨率,使得在不同距离区间的深度图具有不同的分辨率,在不同的距离区间都能够准确识别出动态障碍物,提高系统识别动态障碍物的效率。最后,将局部地图与激光雷达查询帧所形成的深度图进行像素相减,通过得到的视差图去除动态障碍物,并通过降低深度图的分辨率恢复被误删的静态点,得到高精度静态地图。通过实验验证,在仿真环境中,本算法的动态障碍物移除分数为94.13%。在KITTI数据集中,本算法的动态障碍物移除分数为95.22%。在小场景环境和大场景环境中,本算法的动态障碍物移除分数分别为96.43%和93.30%。算法能高效去除动态障碍物,提高地图精度与系统鲁棒性。

    Abstract:

    To address the problem of accuracy degradation and poor system robustness of laser SLAM in a dynamic environment, a laser SLAM algorithm for unmanned vehicles based on a depth map in a dynamic environment is proposed. Firstly, aiming at the problem that some ground point clouds are misjudged as dynamic obstacles when the laser incident light is close to the ground, the laser point cloud is divided into ground point cloud and non-ground point cloud by angle threshold, excluding the influence of ground point cloud. Secondly, the non-ground point cloud is projected into a depth map, and the point cloud in the 3D is projected onto a two-dimensional image. The complexity of point cloud data processing is reduced by using the image domain method. Then, to address the issue that the sparse laser point cloud cannot accurately reflect the real environment, the range information of the LiDAR is used as the weight of the adaptive adjustment depth map to set the resolution of the depth map. The depth map in different distance intervals has different resolutions, and the dynamic obstacles can be accurately identified in different distance intervals, which improves the efficiency of the system in identifying dynamic barriers. Finally, the local map is subtracted from the depth map formed by the LiDAR query frame, the dynamic obstacles are removed by the obtained disparity map, and the static points that are mistakenly deleted are recovered by reducing the resolution of the depth map to get a high-precision static map. Experimental results show that the dynamic obstacle removal score of the proposed algorithm is 94.13% in the simulation environment. The dynamic obstacle removal score of the proposed algorithm is 95.22% in the KITTI dataset. The dynamic obstacle removal score of the proposed algorithm is 96.43% in small scenes and 93.30% in large scenes. The algorithm can efficiently remove dynamic obstacles and improve map accuracy and system robustness.

    参考文献
    相似文献
    引证文献
引用本文

孙明晓,王鑫源,栾添添,王潇,刘鹏飞.动态环境下基于深度图的无人车激光SLAM算法[J].仪器仪表学报,2025,46(3):101-109

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码