基于变迭代机制改进的自适应频带划分方法
DOI:
CSTR:
作者:
作者单位:

1.中车青岛四方机车车辆股份有限公司青岛266033; 2.西南交通大学轨道交通运载系统全国重点实室成都611756

作者简介:

通讯作者:

中图分类号:

TH133.3

基金项目:

国家自然科学基金(52272355)、轨道交通运载系统全国重点实验室自主课题(2024RVL-T11)项目资助


Adaptive bandwidth segmentation method improved by variable iteration mechanism
Author:
Affiliation:

1.CRRC Qingdao Sifang Locomotive & Rolling Stock Co., Ltd., Qingdao 266033, China; 2.State Key Laboratory of Rail Transit Vehicle System, Southwest Jiao Tong University, Chengdu 611756, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高速列车轴箱轴承的运行状态直接影响列车的安全性和动力学性能。然而,在复杂工况下,轴承故障信号往往受到强噪声干扰和随机冲击影响,导致轴承故障脉冲易被湮没,难以有效提取,从而降低故障诊断的准确性。针对这一问题,提出了一种基于变迭代机制改进的自适应频带寻优策略,旨在提升轴承故障诊断的精度和鲁棒性。首先,所提方法运用故障脉冲的循环平稳性,改进了谐波显著指数指标,实现精确定位故障共振频带,并有效抑制噪声和随机冲击的影响。其次,针对固定迭代步长的局限性,设计了一种变迭代步长调整机制,结合能量谱趋势分析,实现快速定位,动态调整迭代步长,有效提高了故障共振频带的定位精度,同时降低运算时间,提高计算效率。所提方法是一种基于故障驱动的自适应频带划分方法,克服传统数据驱动的弊端,在应对随机冲击和强噪声方面表现出有效性和优越性。仿真与实测数据分析表明,所提方法在复杂工况下能够快速、准确地识别故障共振频带,相较于固定频带划分方法、改进的功率谱密度法和固定步长自适应划分方法,所提方法在信噪比提升、故障特征提取精度、计算效率方面均具有显著优势。

    Abstract:

    The operational condition of high-speed train axle box bearings has a direct impact on both train safety and dynamic performance. However, under complex working environments, bearing fault signals are often contaminated by strong noise interference and random impacts, making it challenging to effectively extract fault impulses and leading to reduced diagnostic accuracy. To address this challenge, this paper proposes an improved adaptive frequency band optimization strategy based on a variable iteration mechanism, aimed at enhancing fault diagnosis accuracy and robustness. The method first leverages the cyclostationarity of fault impulses to enhance the harmonic prominence index, enabling precise identification of the fault resonance band while effectively suppressing noise and random disturbances. Additionally, to overcome the limitations of fixed iteration step sizes, a variable-step iteration adjustment mechanism is introduced. By integrating energy spectrum trend analysis, the approach facilitates rapid localization and dynamic adjustment of the iteration step size, improving fault resonance band identification accuracy while reducing computation time and enhancing efficiency. This fault-driven adaptive frequency band division method addresses the shortcomings of traditional data-driven techniques, proving to be effective and superior in dealing with random impacts and strong noise interference. Simulation and experimental analyses show that the proposed method can quickly and accurately identify the fault resonance band under complex working conditions. Compared to fixed band division methods, improved power spectral density methods, and fixed-step adaptive division techniques, the proposed method offers significant advantages in signal-to-noise ratio enhancement, fault feature extraction accuracy, and computational efficiency.

    参考文献
    相似文献
    引证文献
引用本文

林森,张维浩,易彩,陶冶.基于变迭代机制改进的自适应频带划分方法[J].仪器仪表学报,2025,46(3):358-373

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码