动态环境下AIP-RRT*与DGF-APF融合的机器人路径规划
DOI:
CSTR:
作者:
作者单位:

1.内蒙古工业大学机械工程学院呼和浩特010051; 2.内蒙古自治区机器人与智能 装备技术重点实验室呼和浩特010051

作者简介:

通讯作者:

中图分类号:

TH242

基金项目:

国家自然科学基金(52365064)、内蒙古自治区高等学校青年科技英才支持计划(NJYT23043)项目资助


Robot path planning by fusion of AIP-RRT* and DGF-APF in dynamic environments
Author:
Affiliation:

1.School of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; 2.Inner Mongolia Key Laboratory of Robotics and Intelligent Equipment Technology, Hohhot 010051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对移动机器人在路径规划中存在收敛速度慢、路径冗余点较多、动态环境不适用,以及缺乏有效的协同机制综合全局与局部规划结果而导致路径长度的大幅增加等问题,提出一种基于改进势函数的自适应快速搜索随机树(AIP-RRT*)与基于动态引力场的人工势场法(DGF-APF)的路径规划融合算法。首先,构建了自适应目标偏置概率策略,通过启发函数生成新节点,以提高路径规划算法的搜索效率;其次,构建了自适应步长函数,以提高路径探索能力并加快路径规划算法的收敛速度;再次,采用了基于目标回溯的剪枝优化策略,剔除全局路径中的冗余点,以提高路径的质量;最后,提出了面向动态场景的AIP-RRT*与DGF-APF路径规划融合算法,通过以全局关键节点作为局部子目标点在动态环境下进行局部路径规划的方法,实现AIP-RRT*与DGF-APF融合算法的路径规划,并构建了基于动态引力场策略的协同机制,综合全局与局部路径规划的结果从而缩短路径长度。综合仿真实验与真实实验的结果表明,该路径规划融合算法具有较好的全局路径规划能力以及局部路径规划能力,使得机器人能够更好的适应静态以及动态环境。在真实环境中,改进融合算法相较于传统算法在路径长度方面平均减少了6.34%,在运行时间方面平均减少了10.71%。

    Abstract:

    To address the problems of slow convergence speed, numerous redundant points in paths, unsuitability for dynamic environments, and the lack of an effective coordination mechanism to integrate global and local planning results leading to a significant increase in path length in mobile robot path planning, a path planning fusion algorithm based on the Adaptive Improved Potential Function Rapidly-exploring Random Tree* (AIP-RRT*) and the Dynamic Gravity Field Artificial Potential Field method (DGF-APF) was proposed. a path planning fusion algorithm based on the adaptive improved potential function rapidly-exploring random tree* (AIP-RRT*) and the dynamic gravity field artificial potential field method (DGF-APF) is proposed. Firstly, an adaptive goal bias probability strategy is constructed, generating new nodes through a heuristic function to improve the search efficiency of the path planning algorithm. Secondly, an adaptive step size function is developed to enhance path exploration capabilities and accelerate the convergence speed of the path planning algorithm. Thirdly, a pruning optimization strategy based on goal backtracking is employed to remove redundant points in the global path, thereby improving path quality. Finally, a fusion algorithm of AIP-RRT* and DGF-APF path planning for dynamic scenarios is proposed to realize the path planning of AIP-RRT* and DGF-APF fusion algorithms by using the global key nodes as local subgoal points for local path planning in dynamic environments, and a synergy mechanism based on the dynamic gravitational field strategy is constructed to synthesize the global and local path planning results to shorten the path length. The results of the combined simulation and real experiments show that the path planning fusion algorithm has better global path planning capability as well as local path planning capability, which enables the robot to better adapt to static as well as dynamic environments. In the real environment, the improved fusion algorithm reduces the path length by 6.34% and the running time by 10.71% compared with the traditional algorithm.

    参考文献
    相似文献
    引证文献
引用本文

宋俊辉,刘宇庭,郭世杰.动态环境下AIP-RRT*与DGF-APF融合的机器人路径规划[J].仪器仪表学报,2025,46(3):51-64

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码