基于BP+NSGA-Ⅱ梳齿电容压力传感器结构多参数优化
DOI:
CSTR:
作者:
作者单位:

山东理工大学机械工程学院淄博255000

作者简介:

通讯作者:

中图分类号:

TP212TH812

基金项目:

泰山学者青年专家项目(tsqn201909108)、山东省自然基金面上项目(ZR2021MF042)资助


Multi-parameter optimisation of comb capacitive pressure sensors structure based on BP+ NSGA-Ⅱ
Author:
Affiliation:

School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对梳齿电容式压力传感器存在灵敏度低、灵敏度与量程难以同时优化的问题,提出了一种新型梁-膜结构梳齿电容式压力传感器,并采用曲线拟合与BP+NSGA-Ⅱ结合的方法对传感器进行优化。在膜片上表面添加锚点和悬臂梁构成杠杆放大结构,活动梳齿连接在杠杆输出端,通过杠杆的放大原理增加了活动梳齿的位移,提高了传感器的灵敏度。针对数据集维度高、计算量大的问题,利用MATLAB对结构与性能参数进行数据拟合和定量分析。通过对锚点、悬臂梁等结构几何参数与性能指标的相关性进行量化分析,筛选出对传感器性能影响显著的关键参数,并去除冗余变量,降低了数据集的复杂性。在确保结果准确性不退化的前提下,通过降维方法将数据集从14维降至6维,既提高了数据采集效率,又降低了算力损耗。对降维后的数据集利用BP神经网络进行训练,并结合NSGA-Ⅱ算法实现了灵敏度与量程的协同优化,增强了输出结果的可靠性。结果表明,在0~50 kPa的压力范围内,优化后的传感器灵敏度为0.106 pF/kPa,提高了30.4%,非线性误差为0.4% F.S.。该优化方法为多参数复杂结构的优化提供了参考,所设计的传感器具有高灵敏度和低非线性,为MEMS压力传感器的研发提供了新思路。

    Abstract:

    To address the challenges of low sensitivity and the difficulty in simultaneously optimizing sensitivity and range in comb-type capacitive pressure sensors, this paper proposes a novel beam-membrane structured comb-type capacitive pressure sensor. An optimization approach combining curve fitting with BP (Backpropagation) and NSGA-II (Non-dominated Sorting Genetic Algorithm II) methods is utilized to enhance the sensor′s performance. By introducing anchor points and cantilever beams to the diaphragm, creating a lever amplification structure, and connecting the movable comb fingers to the lever′s output, the displacement of the comb fingers is amplified, improving sensitivity. To handle the high dimensionality and substantial computational demands of the dataset, MATLAB is employed for data fitting and quantitative analysis of the structural and performance parameters. A correlation analysis between geometric parameters (such as anchor points and cantilever beams) and performance metrics identifies key factors influencing sensor performance, allowing for the elimination of redundant variables and reduction of dataset complexity. The dimensionality reduction process decreases the dataset from 14 to 6 dimensions without compromising accuracy, thus enhancing data collection efficiency and reducing computational resource consumption. The reduced dataset is trained using a BP neural network, and the NSGA-II algorithm is applied for co-optimization of sensitivity and range, improving output reliability. The results show that within the 0~50 kPa range, the optimized sensor achieves a sensitivity of 0.106 pF/kPa, a 30.4% improvement, with a non-linearity error of 0.4% F.S. This optimization methodology provides valuable insights for refining complex structures with multiple parameters. The proposed sensor, with its enhanced sensitivity and reduced nonlinearity, offers an innovative perspective for advancing MEMS pressure sensor technology.

    参考文献
    相似文献
    引证文献
引用本文

梁瑞梅,李平华,刘阳,苗家齐,庄须叶.基于BP+NSGA-Ⅱ梳齿电容压力传感器结构多参数优化[J].仪器仪表学报,2025,46(3):316-325

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码