深度优化的集成学习模型EKSSA-CatBoost:实现光伏阵列故障高精度智能诊断
DOI:
CSTR:
作者:
作者单位:

1.湖南工业大学电气与信息工程学院株洲412007; 2.湖南省电传动控制与智能装备重点实验室株洲412007

作者简介:

通讯作者:

中图分类号:

TH7TM615

基金项目:

湖南省教育厅重点科研项目(22A0423)、湖南省自科基金项目(2022JJ50073)资助


Deeply optimized integrated learning model EKSSA-CatBoost: Towards highly accurate intelligent diagnosis of PV array faults
Author:
Affiliation:

1.School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China; 2.Hunan Provincial Key Laboratory of Electric Drive Control and Intelligent Equipment, Zhuzhou 412007, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    光伏阵列在运行过程中,可能会受到多种因素的影响,导致不同类型的故障。通过机器学习算法,可以实现光伏阵列数据的实时监测、故障诊断和预测性维护,这种方法不受地理环境的限制,能够提高系统的可靠性和效率。光伏阵列的电流-电压(I-V)曲线是一项重要的指标,包含了大量关于光伏组件健康状况的信息,对于及时发现故障、评估健康状况至关重要。然而,现有方法只对来自I-V曲线的部分信息提取进行诊断分析,没有更深入地挖掘I-V曲线中的所有信息,能检测到的光伏阵列故障十分有限。针对以上问题,首先提出一种IV曲线校正算法用于修正辐照度和温度对同一故障类型特征表现的影响,有效消除环境变量对故障特征表征的耦合效应。然后,利用CatBoost模型实现光伏阵列小样本高精度的实时故障智能诊断,并且利用麻雀搜索算法对模型的关键超参数进行优化。最后,为了进一步提升麻雀搜索算法的寻优能力,通过引入融合精英反向学习策略和柯西高斯变异策略改进麻雀搜索算法,使其在优化CatBoost模型中达到最佳效果。结果表明,利用模拟数据和现场数据分别进行模型的训练及故障诊断,测试集出现仅一个和两个误诊的样本,深度优化的集成学习模型CatBoost的分类准确率均达到99.9%。

    Abstract:

    Photovoltaic (PA) arrays may be affected by a variety of factors during operation, leading to different types of failures. Real-time monitoring, fault diagnosis, and predictive maintenance of PV array data can be realized through machine learning algorithms, an approach that is not limited by geography and can improve system reliability and efficiency. The current-voltage (I-V) curve of a PV array is an important metric that contains a great deal of information about the health of the PV module, which is crucial for timely fault detection and health assessment. However, existing methods only extract part of the information from the I-V curve for diagnostic analysis, without digging deeper into all the information. As a result, the range of detectable PV array faults remains limited. To address the problems, an I-V curve correction algorithm is proposed to correct the effects of irradiance and temperature on the characterization of the same fault type, effectively eliminating the coupling effect of environmental variables on the characterization of fault features. Then, the CatBoost model is used to realize real-time, high-accuracy fault intelligent diagnosis of PV arrays with small samples. The model′s key hyperparameters are optimized using the sparrow search algorithm. Finally, in order to further enhance the optimization ability of the sparrow search algorithm, the sparrow search algorithm is improved by introducing the fusion elite inverse learning strategy and the Cauchy Gaussian variation strategy, so that it achieves the best effect in optimizing the CatBoost model. The results show that when using simulated data for model training and field data for fault diagnosis, only one and two misdiagnosed samples appear in the test set, respectively. The classification accuracy of the deeply optimized integrated learning model CatBoost reaches 99.9% in both cases, demonstrating its exceptional diagnostic performance.

    参考文献
    相似文献
    引证文献
引用本文

彭自然,许怀顺,肖伸平,潘长宁.深度优化的集成学习模型EKSSA-CatBoost:实现光伏阵列故障高精度智能诊断[J].仪器仪表学报,2025,46(5):324-338

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-12
  • 出版日期:
文章二维码