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基于门控循环深度范围预测网络的多视角重建*
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摘 要:针对三维重建技术难以处理高分辨率图像、重建后的点云图精度低、边界模糊的问题,本文提出基于门控循

环单元的多阶段多尺度动态深度范围预测网络模型。首先,利用曲率引导的动态尺度卷积网络作为特征提取模块,通
过计算图像上多个尺度的表面法曲率,得到图像最优像素的特征信息;然后,将精细的特征信息与一种新的深度范围

估计模块相结合,动态估计下阶段的深度范围假设,从而更好的合并邻域像素的信息,实现参考图像和源图像之间的

精确匹配。本文网络与其他10多种方法进行了比较,在 DTU数据集上,整体性能比第2的网络提高2.2%。在

Tank&Temple数据集上,Lighthouse、M60和Panther等场景的重建表现都有大幅提升。同时,本文进行了对比和消

融实验,实验结果证明本文提出的动态深度预测网络,减小内存消耗的同时,显著提高了重建后点云图的精度和完

整度。
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Abstract:Aiming
 

at
 

the
 

problems
 

that
 

3D
 

reconstruction
 

techniques
 

are
 

difficult
 

to
 

deal
 

with
 

high-resolution
 

images,
 

and
 

the
 

reconstructed
 

point
 

cloud
 

maps
 

have
 

low
 

accuracy
 

and
 

fuzzy
 

boundaries,
 

this
 

paper
 

proposes
 

a
 

multi-stage
 

multi-scale
 

dynamic
 

depth
 

range
 

prediction
 

network
 

model
 

based
 

on
 

gated
 

recurrent
 

units.
 

First,
 

a
 

curvature-guided
 

dynamic
 

scale
 

convolutional
 

network
 

is
 

used
 

as
 

a
 

feature
 

extraction
 

module
 

to
 

obtain
 

the
 

feature
 

information
 

of
 

the
 

optimal
 

pixels
 

of
 

the
 

image
 

by
 

calculating
 

the
 

surface
 

normal
 

curvature
 

at
 

multiple
 

scales
 

on
 

the
 

image;
 

then,
 

the
 

fine
 

feature
 

information
 

is
 

combined
 

with
 

a
 

new
 

depth
 

range
 

estimation
 

module
 

to
 

dynamically
 

estimate
 

the
 

depth
 

range
 

assumptions
 

of
 

the
 

next
 

stage,
 

so
 

as
 

to
 

better
 

merge
 

the
 

information
 

of
 

neighboring
 

pixels,
 

and
 

to
 

achieve
 

an
 

accurate
 

matching
 

between
 

the
 

reference
 

image
 

and
 

the
 

source
 

image.
 

The
 

network
 

in
 

this
 

paper
 

is
 

compared
 

with
 

more
 

than
 

10
 

other
 

methods,
 

and
 

on
 

the
 

DTU
 

dataset,
 

the
 

overall
 

performance
 

is
 

improved
 

by
 

2.2%
 

over
 

the
 

network
 

in
 

2nd.
 

On
 

the
 

Tank&Temple
 

dataset,
 

the
 

reconstruction
 

performance
 

of
 

the
 

Lighthouse,
 

M60
 

and
 

Panther
 

scenes
 

are
 

substantially
 

improved.
 

Meanwhile,
 

comparison
 

and
 

ablation
 

experiments
 

are
 

conducted
 

in
 

this
 

paper,
 

and
 

the
 

experimental
 

results
 

demonstrate
 

that
 

the
 

dynamic
 

depth
 

prediction
 

network
 

proposed
 

in
 

this
 

paper
 

significantly
 

improves
 

the
 

accuracy
 

and
 

completeness
 

of
 

the
 

reconstructed
 

point
 

cloud
 

maps
 

while
 

reducing
 

the
 

memory
 

consumption.
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0 引  言

  传统的 MVS方法[1]大多采用手工设计的特征描述符

来确定不同图像中像素之间的对应关系,并且应用工程正

则化来恢复三维点云,这使得在弱纹理和镜面反射等光滑

区域的重建效果较差。随着深度学习方法[2-5]的日趋成熟,
基于卷积神经网络的深度估计方法在各类 MVS算法的基

准测试上表现出了明显优势。
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基于深度学习的多视角三维重建[6-8]用三维卷积神经

网络对3D代价体(Cost
 

Volume)进行正则化,最终从概率

体中回归深度图。虽然这种方法在基准测试上取得了令人

印象深刻的表现,但它并不能很好地扩展到高分辨率场景,
运行速度和内存分配同样难以满足大多数应用场景。为了

提高效率,近期基于深度学习的方法主要可分为两类:递归

方法R-MVSNet[9]和多阶段方法CasMVSNet[10]。
递归方法通常使用循环神经网络门控循环单元(gated

 

recurrent
 

unit,
 

GRU)进行代价体正则化来降低内存消耗,
但增加了运行时长。多阶段方法采用级联结构,由粗到细

的估计深度图,这种方法可以平衡内存和运行时间,但会减

少深度搜索范围。例如CasMVSNet和CVP-MVSNet[11]

网络以最优深度分辨率构造代价体,但在精细阶段的深度

预测范围较窄,使重建完整性受到严重影响。为了控制运

行成本的同时提高重建质量,UCSNet[12]和DDR-Net[13]提
出了修改精细阶段代价体的想法。UCSNet利用深度分布

的方差来确定下一阶段的深度范围假设,并相应地调整深

度分辨率,但是UCSNet的有效性在很大程度上依赖于粗

阶段深度预测的质量,这种静态深度假设方法不适合于高

精度和大场景下的的深度估计。DDR-Net解决了粗阶段

深度预测质量差这一问题,提出了一种动态深度范围估计

模块,能够从附近的像素中收集深度不确定性信息,从而扩

大深度搜索范,但是DDR-Net对于图像特征的采集和对深

度的预测方面缺少必要的联系,鲁棒性较差。另外,受内存

消耗和运行时间的限制,MVS网络经常只能在低分辨率图

像上进行训练。因此,现有的固定尺度特征提取方法,在深

度预测中无法有效推广到高分辨率场景。
针对当前 MVS在多阶段方法上存在的上述一系列问

题,本文提出GRU-MVSNet网络,使用深度范围估计模块

(GREM)和上一阶段的概率分布生成细化的深度图,保证

了下一阶段的深度假设范围内所覆盖的每个像素都对应图

像正确的真实深度值,同时改善了GPU内存限制带来的低

分辨率训练问题,从而实现高质量的三维重建任务。

1 相关工作

  传统的 MVS方法通常遵循由摄像机的内在和外在参

数以及从SFM获得的稀疏点云作为输入,将从多视角图像

中提取的特征点合并,并通过匹配、扩展和过滤生成密集的

三维点云,
 

但是内存消耗较大一直是传统 MVS需要解决

的问题。
基于深度学习的多视角三维重建方法在取代传统三维

重建的每一个步骤方面都显示出了巨大的潜力。2018年,

Yao等[14-17]提出了 MVSNet,是目前广泛使用的深度学习

MVS框架之一。随着研究的深入,Yao等又提出了 R-
MVSNet网络,采用2D

 

GRU递归网络作为正则化模块,
但是增加了运行时间。Fast-MVSNet[18]提出了一种新的

稀疏到密集、粗到细的框架,用于在 MVS中产生快速精确

的深度估计。Point-MVSNet[19]提出了一种基于点的深度

图细化网络。CasMVSNet和CVP-MVSNet将从粗到细

的策略应用到 MVS重建中,构造了一个图像特征金字塔,
以最粗的分辨率构建整个深度范围的代价体;然后,根据之

前的深度预测方法计算出一个缩小的采样范围。由粗到细

的体系结构降低了网络对内存的消耗,从而支持更深层次

的主干网络和更高分辨率的输出。
本文的方法受上述工作的启发,

 

整体网络结构采用从

粗到细的策略,使用曲率卷积单元进行多尺度动态特征提

取,同时采用GREM模块进行深度范围估计,
 

以保证每个

像素的真实值覆盖在下一阶段的范围假设中,提高网络对

目标物体的重建质量。

2 MVS算法

  本文提出的GRU-MVSNet网络采用级联结构框架,由三

个级联阶段组成,每个阶段通过3个步骤来估算深度,分别为

特征提取、代价体正则化和动态深度范围估计。网络首先通

过在特定的尺度上参考和源特征图之间的映射关系来计算三

维代价体,然后用3DCNN进行正则化,最后逐步确定近似的

深度范围,以更好地适应高分辨率场景的重建任务。

2.1 曲率特征提取网络

  传统的 MVS方法中常采用多个降采样卷积层或2D
 

U-Net进行特征提取,但是增加网络的计算量,难以实现高

分辨率场景的重建。为了避免该问题,并且在特征提取阶

段获取更重要的全局信息,本文提出一个由曲率引导的动

态特征网络,通过扩展搜索尺度空间,为每个像素选择最优

尺度来减少匹配的模糊度,从而学习高鲁棒性的特征。为

了降低网络的计算复杂度,在曲率卷积结构中使用较少数

量的候选尺度,本文使用3个候选尺度。
动态特征网络采用多个曲率引导的卷积结构组成,给

定一组不同大小的卷积核 {C1,C2,…,CK},对应r个候选

尺度 {σ1,σ2,…,σK},曲率卷积结构如图1所示。

图1 曲率卷积结构

首先,在r个候选尺度上估计近似正常的曲率;然后进

行尺度选择步骤,从估计的曲率中输出最优尺度。网络中

采用法曲率估计图形曲面沿特定方向上特定点的弯曲程

度,法曲率Δzpq 计算如下:

v(x,ω)=
u2Ixx(x,σ)+2uvIxy(x,σ)+v2Iyy(x,σ)

1+I2
x(x,σ)+I2

y(x,σ)(1+(uIx(x,σ)+vIy(x,σ))2)
(1)
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I(x,σ)=Ix*G(x,σ)表示图像尺度σ中像素x的图

像强度,由图像I与高斯核G(x,σ)卷积决定。Ix、Iy、Ixx、

Ixy 和Iyy 的导数由原始图像I与高斯核G(x,σ)的导数卷

积得到,如下:

∂i+j

∂xi∂yjI(X,σ)=I(X)* ∂i+j

∂xi∂yjG(X,σ) (2)

由于Ix、Iy、Ixx、Ixy 和Iyy 导数计算需要进行5次卷积

运算,为了降低计算成本,同时保持高维特征输入,本文使

用可学习的核。因此,对于每个尺度的σ,引入了3个可学

习的卷积内核 Kxx
σ 、Kxy

σ 和 Kyy
σ 来分别代替Gxx、Gxy 和

Gyy。 这些核适用于输入特征,用来计算图像表面的二阶

导数。Fin 表示输入特征,正态曲率由式(3)得到:

curvσ(x,ω)=ω
Fin*Kxx

σ Fin*Kxy
σ

Fin*Kxy
σ Fin*Kyy

σ

􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 (3)

特征输出Fout 由式(4)得到。其中,{C1,C2,…,CK}
表示特征输入Fin 中的K 个候,* 是卷积运算符。

Fout =ω1(Fin*C1)+ω2(Fin*C2)+…ωK(Fin*CK)
(4)

2.2 构造代价体

  3D代价体的构建是基于深度学习三维重建方法的关

键步骤。给定一个深度采样假设dj(j=1…D)及所有的

相机参数 {Ki,Ri},通过可微的单映性变换将提取的特征

图Fout 从源图像映射到参考图像上,在多个尺度上构建多

个代价体。给定每个视图的相机内参和外参矩阵,参考视

图深度dj 映射矩阵表示为:

Hi(d)=KiRi(I-
(t1-ti)nT

1

d
)RT

1K-1
1 (5)

其中,Hi(d)指第i个视图的特征图与深度d 处的参

考特征图之间的映射关系。此外,Ri 和ti 分别表示第i个

视图的旋转和平移参数。n1 为参考相机的主轴。
第1阶段,从一个预定义的深度区间中均匀采样来构

造体积模型,然后采用基于方差的度量方式生成单个代价

体。在第2阶段和第3阶段,其深度假设根据先前深度预

测的像素级进行再一次的不确定性估计,生成具有空间变

化的深度值。本文将第K +1个阶段的同源函数设为:

Hi(dm
k +Δm

k+1)=KiRi(I-
(t1-ti)nT

1

dm
k +Δm

k+1

)RT
1K-1

1 (6)

其中,dm
K 为第K 阶段第m 个像素的预测深度,Δm

K+1

为K +1阶段要学习的第m 个像素的剩余深度。
单映性变换作为连接二维特征提取和3D正则化网络

的核心步骤,实现了深度预测的端到端训练模式。在构造

成本体积后,应用3DCNN对代价体进行正则化,3DCNN
的末端应用SOFTMAX环节来预测每个像素的深度概率。

每个代价体由多个平面组成,使用DK 表示K 阶段的

平面数。PK,j 表示像素深度的概率分布,映射的PK,j 组成

概率体,表示第K 个阶段的第j个平面的深度假设。LK,j

表示像素x 处的深度为LK,j(x)的概率。通过加权和重建

了第K 阶段的深度图
 

L̂K(x):

L̂K(x)=∑
Dk

j=1
LK,j(x)·PK,j(x) (7)

本文的3个阶段使用相同的网络架构,如图2所示,通
过不共享权重的方式,每个阶段都可以学习不同尺度的信

息并各自处理。

图2 模型结构

2.3 动态深度范围估计

  GRU-MVSNet网络的关键是逐步细分局部空间,通
过细化深度预测的方式来提高重建的精度。本文基于前

一阶段预测深度的不确定性提出使用一种新的范围估计

模块(GREM)。可以利用先前的概率体信息,自适应地估

计动态深度范围,再利用动态特征提取模块捕获附近像素

的特性和上下文信息,GREM结构如图3所示。

GREM结构由不同尺寸的卷积层和GRU层组成。其

中,GRU层作为预处理阶段,合并收集到的特征,在特征达

到最低分辨率后,通过两个不同尺寸反卷积层进行解码操
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图3 GREM结构

作。GREM模块可以自适应地估计动态深度范围,最终利

用SOFTMAX层将不确定性映射的输出值限制为[0,1]。
网络 的 输 出 是 一 个 不 确 定 性 的 特 征 图 C =

{C(x)}x∈I,C(x)指的是图像像素的不确定性深度分布。
给定由GREM获得的不确定度值C(x)和像素x 处之前

的深度预测L(x),本文由式(8)确定下一阶段的深度范围

D(x):

D(x)= [L(x)-λC(x),L(x)+λC(x)] (8)
其中,λ是一个决定置信区间有多大的超参数。利用

GREM模块对上一阶段概率体积的学习,考虑了附近的像

素点,以更高的置信度学习深度范围假设,并对每个阶段

的概率预测进行调整,以获得更好的优化间隔,因此网络

具有更好的空间分区能力。
本文网 络 使 用 L1损 失 函 数。最 终 的 损 失 函 数 表

示为:

Loss=∑
3

k-1akLossk +∑
2

k=1bkLossrefined
k (9)

式中:LossK、Lossrefined
K 、αK 和βK 分别表示第K 阶段的损失

和细化损失及其对应的权重。

3 实验与分析

3.1 实验数据集介绍

  本文对改进的网络分别在室内DTU[20]数据集和室外

Tank&Temple[21]数据集上进行评估。DTU 数据集包含

124个不同的室内场景,每个场景包含49或64张图像,其
视点和照明条件都是精心设计的。该数据集提供了摄像

机位姿参数和Ground
 

Truth点云。图像分辨率为1
 

600×
1

 

184,每个场景的深度范围在425~935mm之间。通过

计算点云的平均精度,平均完整度和总体得分评估网络

模型。

Tank&Temple数据集包含两个场景集,即中间和高

级,本文使用中间场景集来进行评估,使用f1分数作为评

估标准。有8个 不 同 的 户 外 场 景,即 Family、Francis、

Horse、Lighthouse、M60、Panther、Playground和 Train。

Tank&Temple数据集建场景非常大,在物体的表面有很

多反射和遮挡,非常具有挑战性。

3.2 实验设置

  本文的网络在DTU数据集上进行训练,使用降采样

图像和Ground
 

Truth来优化训练过程。输入图像的分辨

率设置为640×512,3个阶段的深度平面数分别设置为

48、32和8个,损失权重分别设置为α1=0.5、α2=1.5和

α3=2.5。细 化 损 失 的 权 重 分 别 设 置 为 β1 =2.0 和

β2=0.5。
本文使用PyTorch搭建框架,并使用Adam优化器来

训练模型。整个网络在1个 NVIDIA
 

Telsa
 

P100显卡上

进行了16次的训练,批次大小为16。初始学习率设置为

0.001,并在之后的阶段迭代减半。

3.3 实验结果分析

  首先在DTU测试数据集上与其他 MVS评估了本文

提出的方法。定量结果如表1所示,与原方法DDR-Net相

比,本文提出的GRU-MVSNet可以显著提高点云的准确

性和完整性。

表1 DTU数据集评估表(越小越好)

方法 准确性/mm 完整性/mm 总体评分/mm

COLMAP[22] 0.400 0.664 0.532

MVSNet
 

0.396 0.527 0.462

CasMVSNet
 

0.346 0.351 0.348

CVP-MVSNet
 

0.296 0.406 0.351

Point-MVSNet
 

0.342 0.411 0.376

Vis-MVSNet[23]
 

0.369 0.361 0.365

UniMVSNet[24]
 

0.352 0.278 0.315

UCSNet
 

0.339 0.349 0.344

DDR-Net
 

0.339 0.320 0.329
本文

 

0.352 0.272 0.312

  网络输出的深度图如图4所示,本文选择可视化DTU
数据集中的scan15和scan25场景在不同的网络上进行了

比较,可以看出GRU-MVSNet生成了更精细的深度图。
为了更直观的体现重建后的效果,本文还将重建的点

云结果与同样使用深度范围假设的网络UCSNet和DDR-
Net进行了比较。对比结果如图5所示,本文的方法不论

是在整体点云图的精度上还是在黄色框内部分的完整性

上都展现出了优于其他方法的表现,本文的方法可以重建

出更完整、更准确的点云图。
本 文 使 用 DTU 训 练 集 生 成 的 模 型 测 试

Tank&Temple数据集中的intermediate数据集来 评 估

GRU-MVSNet网络的泛化能力。实验使用视角数N=5,
图像分 辨 率 W ×H =960×560,在 没 有 任 何 微 调 的

Tank&Temple数据集上进行评估,如表2所示。由于

Tank&Temple数据集包含了许多大型的户外场景,需要

消耗大量的 GPU内存,所以实验降低了Family、Francis
和 Horse的输入图像分辨率,因此会导致整体评估结果有

所降低。
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图4 DTU数据集深度图可视化结果

图5 DTU数据集点云图可视化结果

表2 Tank&Temple数据集评估表(越大越好)

方法 Mean Family Francis Horse Lighthouse M60 Panther Playground Train
COLMAP 42.14 50.41 22.25 25.63 44.83 44.83 46.97 48.53 42.04
MVSNet 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69
R-MVSNet 48.40 69.96 46.65 32.59 42.95 51.88 48.80 57.43 47.54
CVP-MVSNet 54.03 76.50 47.74 36.34 55.12 57.28 54.28 57.43 47.54
Point-MVSNet 48.27 61.79 41.15 34.20 50.79 51.97 50.85 52.38 43.06
UniMVSNet 64.36 81.20 66.43 53.11 63.46 66.09 64.84 62.23 57.53
CasMVSNet 56.42 76.36 58.45 46.20 55.53 56.11 54.02 58.17 46.56
UCSNet 54.83 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89
DDR-Net 54.91 76.18 53.36 43.43 55.20 55.57 52.28 56.04 47.17

本文 61.66 80.66 63.15 50.60 64.03 65.55 64.80 58.50 46.00

  本文提出的GRU-MVSNet在Tank&Temple数据集

上部分场景重建的点云结果如图6所示,表明本文的方法

无论是在室内环境还是室外环境都有良好的表现,显示出

了更强的泛化性和鲁棒性。
本文对DTU数据集中测试集的所有场景进行深度估

计进而融合成点云图,如图7所示。
本文将该方法的一些综合性能与其他几种基于深度

学习的多视角三维重建方法在 DTU 数据集上进行了比

较,包括运行时间和内存消耗,输入图像分辨率为 W ×
H=1

 

600×1
 

184,如表3显示了性能比较。
对于相同大小的输入图像,本文的方法在输入高分辨

率图像的情况下,消耗了较小的内存占用量和合理的运行

  

图6 Tank&Temple数据集可视化结果
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图7 DTU测试集点云图

表3 DTU数据集内存和时间重建质量

方法 输入尺寸 深度图尺寸 总体评分/mm GPU内存/MB 运行时间/s
COLMAP 1

 

600×1
 

200 400×288 0.532 18
 

600
 

8.50
MVSNet 1

 

600×1
 

184 400×288 0.462 22
 

511
 

2.76
R-MVSNet 1

 

600×1
 

184 400×288 0.417 6
 

915
 

5.09
Point-MVSNet 1

 

600×1
 

184 640×480 0.391 8
 

731
 

3.35
CVP-MVSNet 1

 

600×1
 

184 800×576 0.351 8
 

795
 

1.72
CasMVSNet 1

 

600×1
 

184 1
 

600×1
 

184 0.348 10
 

153
 

0.89
UCSNet 1

 

600×1
 

184 1
 

600×1
 

184 0.344 7
 

252
 

0.87
DDR-Net 1

 

600×1
 

184 1
 

600×1
 

184 0.329 7
 

345
 

0.88
本文 1

 

600×1
 

184 1
 

600×1
 

184 0.312 7
 

061
 

0.79

时间,良好的重建效果,充分体现了该深度估计方法的实

用性。
由于多视图图像将为深度推断任务提供更多的信息,

本文选择 N=3、5和7的视图数进行测试,评估结果如

表4所示。

表4 不同视角数评估表

视图数 准确性/mm 完整性/mm 总体评分/mm

3 0.353 0.291 0.322

5 0.342 0.272 0.312

7 0.353 0.280 0.316

  当N=5时,重建结果最好,说明视图数量增加可以有

效解决视角遮挡带来的问题。实验证明随着输入视图的

增加,重构质量的准确性(Acc.)和完整性(Comp.)都有所

提高。

3.4 消融实验

  为了验证本文所提方法的优越性,本文消融实验在

DTU数据集上对重建后的点云图进行评估,评价指标为

点云图的精度和完整度求和均值,实验结果如表5所示。
在特征提取阶段使用曲率卷积网络和普通卷积网络的前

提条件下,使用本文提出的深度预测模块 GREM 比采用

REM 模 块 可 以 提 高 模 型 的 性 能。当 不 使 用 REM 和

GREM时,网络为 MVSNET的[425,935]mm均匀取样深

度采样。实验结果证明,GREM 提升重建效果显著,并且

当网络同时使用曲率卷积和GREM时,重建效果最佳。

表5 DTU数据集上深度预测模块的消融实验

Conv Curconv REM GREM 总体评分/mm
􀳫 0.462

􀳫 􀳫 0.336
􀳫 􀳫 0.329

􀳫 􀳫 0.312

4 结  论

  本文提出了一种使用多尺度特征提取网络的动态多

视角深度估计网络框 GRU-MVSNet,该框架的核心思想

是利用由曲率引导的特征提取网络学习最优像素的尺度

来学习多尺度特征,该特征结合REM 模块动态推断深度

假设,可以进行更大范围的深度预测,达到了较好的重建

质量,在 DTU 数据集 和 Tank&Temple数 据 集 上 效 果

显著。
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