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Multi-view stereo reconstruction based on gated recurrent deep range
prediction network

Gao Yu Zhu Lizhong Liu Yunting Liu Xiaoyu
(School of Automation and Electrical Engineering, Shenyang University of Technology,Shenyang 110159, China)

Abstract: Aiming at the problems that 3D reconstruction techniques are difficult to deal with high-resolution images.,
and the reconstructed point cloud maps have low accuracy and fuzzy boundaries, this paper proposes a multi-stage
multi-scale dynamic depth range prediction network model based on gated recurrent units. First, a curvature-guided
dynamic scale convolutional network is used as a feature extraction module to obtain the feature information of the
optimal pixels of the image by calculating the surface normal curvature at multiple scales on the image; then, the fine
feature information is combined with a new depth range estimation module to dynamically estimate the depth range
assumptions of the next stage, so as to better merge the information of neighboring pixels, and to achieve an accurate
matching between the reference image and the source image. The network in this paper is compared with more than 10
other methods, and on the DTU dataset, the overall performance is improved by 2. 2% over the network in 2nd. On
the Tank& Temple dataset, the reconstruction performance of the Lighthouse, M60 and Panther scenes are
substantially improved. Meanwhile, comparison and ablation experiments are conducted in this paper. and the
experimental results demonstrate that the dynamic depth prediction network proposed in this paper significantly
improves the accuracy and completeness of the reconstructed point cloud maps while reducing the memory
consumption.
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