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摘 要:针对海岸线遥感图像存在的不规则边界精细化分割困难的问题,本文提出了非对称性多路解码的海岸线分

割网络(AMDNet)。以Deeplabv3+作为主干网络,通过使用EfficientNet-B0作为特征提取器,大幅降低网络计算量,
并在改进的ASPP中引入D-LKA模块,添加额外的偏移量来调整标准卷积的采样位置,允许卷积核灵活调整采样网

格,结合DUpsampling技术实现上采样过程中的高精度还原,提高图像分割的精确度。AMDNet模型在Aerial
 

photo-
maps数据集上的准确率、灵敏度、Dice和Jaccard分别达到了96.77%、93.03%、90.42%、86.67%,性能提升明显。
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Abstract:
 

Aiming
 

at
 

the
 

difficulty
 

in
 

fine
 

segmentation
 

of
 

irregular
 

boundaries
 

in
 

coastal
 

remote
 

sensing
 

images,
 

this
 

paper
 

proposes
 

an
 

Asymmetric
 

Multi-path
 

Decoding
 

Network
 

for
 

Coastline
 

Segmentation
 

(AMDNet).
 

Taking
 

Deeplabv3+
 

as
 

the
 

backbone
 

network,
 

the
 

network
 

uses
 

EfficientNet-B0
 

as
 

the
 

feature
 

extractor
 

to
 

significantly
 

reduce
 

the
 

computational
 

load
 

of
 

the
 

network.
 

Additionally,
 

the
 

D-LKA
 

module
 

is
 

introduced
 

into
 

the
 

improved
 

ASPP
 

to
 

add
 

extra
 

offsets
 

for
 

adjusting
 

the
 

sampling
 

positions
 

of
 

standard
 

convolution,
 

allowing
 

the
 

convolution
 

kernel
 

to
 

flexibly
 

adjust
 

the
 

sampling
 

grid.
 

Combined
 

with
 

DUpsampling
 

technology
 

to
 

achieve
 

high-precision
 

restoration
 

during
 

the
 

upsampling
 

process,
 

the
 

accuracy
 

of
 

image
 

segmentation
 

is
 

improved.
 

The
 

accuracy,
 

sensitivity,
 

Dice
 

and
 

Jaccard
 

of
 

the
 

AMDNet
 

model
 

on
 

the
 

Aerial
 

photo-maps
 

dataset
 

reach
 

96.77%,
 

93.03%,
 

90.42%
 

and
 

86.67%
 

respectively,
 

showing
 

a
 

significant
 

performance
 

improvement.
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0 引  言

  海岸线作为海洋与陆地的动态交界线,是地球表面最

为活跃和复杂的地理单元之一,不仅是海洋生态系统与陆

地生态系统物质循环、能量交换的关键界面,还承载着港口

建设、渔业生产、旅游开发、国防安全等多重战略功能,对沿

海地区的经济发展、生态保护及社会稳定具有不可替代的

作用[1]。然而,在全球气候变化与人类活动双重作用下,海
岸线正面临着前所未有的动态变化挑战,海平面上升引发

的海岸侵蚀、风暴潮导致的岸线后退、围填海工程造成的岸

线人工改造、滨海湿地退化引发的岸线形态改变等问题日

益突出,准确掌握海岸线的时空变化规律已成为应对全球

环境变化、保障沿海地区可持续发展的核心需求。
随着遥感技术的飞速发展,其具备的大范围覆盖、高时

空分辨率、多光谱信息、周期性观测等优势,为海岸线监测

提供了全新的技术途径。基于遥感影像的海岸线分割技术

能够捕捉不同时空尺度、不同光谱特征的海岸带信息,已成

为当前海岸线检测的主流技术。高分辨率遥感影像能够提

供丰富的地物信息,如何有效利用遥感影像的纹理信息,克
服遥感影像中同物异谱和异物同谱的挑战,是目前遥感影

像分割技术急需解决的重要问题。
传统图像分割方法依赖数学模型、拓扑学及浅层图像
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处理技术,通过人工设计特征实现地物与背景的分离,核心

思路是利用地物的颜色、纹理、梯度等低级语义信息构建分

割准则,主要分为基于边缘检测、基于阈值、基于区域及基

于传统机器学习的四类方法[2-5]。边缘检测及阈值分割方

法基于灰度、纹理或光谱的突变或者阈值设定进行图像识

别,具有计算效率高、易实现的特点,但对复杂光谱混合的

适应性较差。区域生长通过将相似像素(基于光谱、纹理或

空间邻近性)聚合为区域实现分割,能有效保留地物的区域

完整性,但对种子点依赖性强,易出现过生长或欠生长。传

统机器学习方法通过训练数据学习地物特征与类别间的映

射关系,摆脱了对人工特征的完全依赖,适用于多特征融合

的遥感分割场景[6]。主流算法包括支持向量机(support
 

vector
 

machine,
 

SVM)[7]、随 机 森 林 (random
 

forest,

RF)[8]、K-Means聚类[9]及条件随机场(conditional
 

random
 

field,CRF)[10]等,但受限于特征表达能力,难以处理高分辨

率遥感影像的复杂语义信息。
随着深度学习在计算机视觉领域的突破,卷积神经网

络 (convolutional
 

neural
 

networks, CNN )[11-12]、

Transformer[13-14]等方法凭借强大的自主特征学习能力,成
为遥感影像分割的主流技术。这类方法无需人工设计特

征,能自动捕捉影像的高级语义信息,有效解决了传统方法

对复杂场景适应性差的问题。近年来,Transformer凭借

其强大的全局建模能力,被广泛引用于遥感图像分割领域。
例如王立波采用基于Transformer的双路径网络结构,增
设高分辨率特征提取路径,设计多层次特征融合模块和通

道维度特征 改 善 模 块,提 升 建 筑 物 边 缘 提 取 与 优 化 能

力[15]。此外,众多学者尝试通过注意力机制改善分割网络

的特征捕捉能力。例如,Li等[16]提出一种协同注意力模

块,通过协同机制让空间特征与通道特征在建模过程中相

互引导,提升特征的判别能力,尤其针对弱目标、离散目标

的识别精度。Yin等[17]提出多尺度上下文与线性自注意力

的协同框架,有效提升了模型对边缘区域以及小目标的分

割能力。
由于海岸线遥感图像中存在复杂地物特征背景,光谱

信息特征多样、海岸线特征分布不明晰。为了提升方法准

确性,基于深度学习技术的遥感图像分割方法需要大量的

标记数据来进行训练,特别是对于遥感图像这种复杂的数

据类型,数据获取与计算成本较高。
针对上述问题,本文提出了基于改进的DeepLabV3+

的遥感影像分割网络。以Deeplabv3+作为主干网络,通过

使用EfficientNet-B0作为特征提取器大幅降低网络计算

量,并 在 改 进 的 空 洞 空 间 金 字 塔 池 化 (atrous
 

spatial
 

pyramid
 

pooling,
 

ASPP)方 法 中 引 入 可 变 大 核 注 意 力

(deformable
 

large
 

kernel
 

attention,D-LKA)模块,添加额

外的偏移量来调整标准卷积的采样位置,允许卷积核灵活

调整采样网格,结合DUpsampling技术实现上采样过程中

的高精度还原,提高图像分割的精确度。与传统基于编码-

解码结构的遥感影像分割方法相比,本文提出的模型更有

效地融合了低级特征与高级语义特征,达到更高精度的分

割效果。

1 网络模型总体设计

  本文模型基于改进的DeeplapV3+[18]结构。现有模型

在处理图像时常常面临复杂边界、误判等难题。此外,采用

Xception(extreme
 

inception)作为编码器基础架构,并与

ASPP模块相结合时,会因为多次卷积操作导致模型中的

参数数量大幅上升,这不仅增加了训练时间,还会导致网络

收敛速度减缓,从而严重影响了模型的训练效率。
针对deeplabv3+网络存在的诸多缺陷,本文提出了如

图1所示的改进遥感图像海岸线分割网络。首先利用

Efficientnet-B0优势,替代了原来的 Xception网络作为骨

干网络,能够在更深层次及更广范围内提取语义特征,同时

极大减少模型计算量。其次,由于原网络采用的上采样方

法恢 复 精 度 较 低,所 以 引 入 了 可 学 习 的 上 采 样 模 块

DUpsampling,使得网络模型的参数量和网络复杂度有了

进一步的降低,与此同时保持了网络的分割性能。与此同

时,引入了一个新的复合大核空洞卷积块(D-LKA
 

atrous
 

spatial
 

pyramid
 

pooling,DASPP),它能够捕获丰富的多尺

度上下文信息,并生成更具深度的特征映射。而为了处理

海岸遥感图像边缘模糊、不规则的问题,引入了D-LKA可

变形大核卷积注意力,在采样时可以更贴近物体的形状和

尺寸,更具有鲁棒性。

图1 网络总体结构

Fig.1 Overall
 

network
 

structure

2 详细设计

2.1 Efficient网络

  本文采用Efficientnet[19]替换传统 DeeplabV3+的特

征提取网络。EfficientNet-B0采用了一种创新的缩放策

略,区别于传统的单一维度缩放(如仅深度或宽度),它采用

一组预先设定的缩放系数,同步地调整网络的深度、宽度以
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及分辨率,以实现更高效的模型优化。这种方法实现了网

络结构的均衡扩展,保证了在各个维度上的增长是协调一

致的。因此,选择EfficientNet-B0作为海岸线遥感图像分

割的backbone,能够充分利用其高效的特性来提高网络性

能。如表1所示,模型一共分为8个stage,表中的卷积层

后默认都跟有BN以及Swish激活函数。stage
 

1是一个

3×3的卷积层。stage
 

2~stage
 

8是重复堆叠 MBConv。
表中分辨率是每个输入特征矩阵的高度和宽度,层数则是

将Operator重复多少次。

MBConv模块结构如图2所示,执行流程始于对输入

特征图应用1×1的逐点卷积,目的是增加通道数,实现升

维。接下来,采用深度卷积,其中使用的卷积核尺寸为k×
k(k通常为3或5),步长为1或2。此后,通过SE模块对

通道间的关系权重进行学习。紧接着,经过1×1的逐点卷

积恢复到初始的通道数,后跟Dropout层。最终,通过添加

跳跃连接,实现特征矩阵的相加输出,通过跳跃连接加速训

练过程,提升模型的性能。与传统卷积相比,这种结构大大

减少了参数量,并显著增强了学习能力。

表1 EfficientNet-B0网络参数

Table
 

1 EfficientNet-B0
 

network
 

parameters
阶段 运算操作 分辨率 通道数 层数

1 Conv3×3 224×224 32 1

2 MBCov1 112×112 16 1

3 MBCov6 112×112 24 2

4 MBCov6 56×56 40 2

5 MBCov6 28×28 80 3

6 MBCov6 14×14 112 3

7 Conv1×1 7×7 1
 

280 1

图2 MBConv结构图

Fig.2 MBConv
 

structure
 

diagram

2.2 DUpsampling模块

  在语义分割任务中,编解码方案的上采样环节是至关重

要的,它负责将特征图的分辨率恢复到与原始输入相同的尺

寸。此过程中,常用的技术有双线性插值和卷积的组合使用。
当其与随后的卷积操作相结合时,能够达到与转置卷积相近

的效果。然而,若采用诸如外围补零等其他策略,则可能会不

必要地引入大量冗余信息,从而影响模型性能。
本文不采用普通的上采样方法其原因在于,那些方法

并未充分考虑到像素点标签之间的关联性,即数据间的独

立性,这在一定程度上限制了其在语义分割任务中的性能

表现。这一情况将导致两个方面的问题:

1)采用多个扩张卷积来降低整体编码步长。然而,这
种做法带来了更高的计算复杂性和内存占用,从而阻碍了

在大规模数据训练和实时应用部署方面的进展。

2)解码器在语义分割过程中负责整合来自不同层级

的信息,特别是较低层级的特征。然而,由于双线性上采

样在恢复特征细节方面的能力有限,最终预测的精细程度

往往受到低层级特征分辨率的制约。因此,为了生成更高

分辨率的预测结果,解码器需要采取策略将高分辨率特征

有效地嵌入到较低层次的表示中。
为了应对这些挑战,引入了 DUpsampling,该方法巧

妙利用了分割标签空间中的冗余信息,使得像素级预测的

精准恢复成为可能,同时减轻了对卷积解码器的高度依

赖。因此,无需大幅减小整体步幅,这一改进不仅简化了

分割框架,更显著降低了整个计算过程中的时间和内存消

耗,其结构如图3所示。

图3 DUsampling结构图

Fig.3 DUsampling
 

structure
 

diagram

如图3所示,上采样过程将特征图的分辨率扩大,例
如将尺寸为H×W ×C 的特征图上采样至2H×2W×N/

4。这意味着每个特征图中的像素会被扩展为4个像素的

表示。在DUpsampling方法中,对于特征图中的每个像素

(其维度为1×C),通过乘以一个待训练的权重矩阵W(其
维度为N ×C),最终得到1×N 的特征表示。然后通过

rearrange操作,将1×N 的特征表示重新排列为2×2×
N/4的格式,完成上采样过程。权重矩阵W 的计算依据是

已知的训练标签,而真实的分割结果在训练集中是已知

的。通过对每个分割图进行矩阵转换,将其映射到与特征

图相同的维度,以便更好地完成上采样任务。

2.3 D-ASPP架构

  ASPP模块对所给定的输入以不同采样率空洞卷积并

行采样,用于提取多尺度特征。然而,如果卷积步长和膨

胀率的设置不当,某些像素在空洞卷积计算过程中,可能

始终未参与计算,使得提取特征丢失了部分重要的局部信

息。因此,本文采用如图4所示的方法,在ASPP模块中,
增加了D-LKA模块,通过可变形大核卷积注意力,增强模

型的感受野,提升对复杂不规则边界的特征提取能力。
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图4 改进的ASPP结构示意图

Fig.4 Improved
 

ASPP
 

structure
 

diagram

如图5所示,D-LKA的核心理念是将大核注意力和可

变形卷积的相结合,以实现类似自我关注的感受野,同时

避免了传统自我关注方法所带来的高计算成本。此外,D-
LKA还通过可变形卷积的方式来动态地调整采样网格,从
而使模型更灵活地适应不同尺度的目标。

图5 D-LKA结构示意图

Fig.5 D-LKA
 

structure
 

diagram

大核注意力采用大卷积核捕捉长距离依赖关系,它将

K×K 卷积核分解为一个深度膨胀卷积、深度卷积和1×1
卷积,可以用更少的参数和计算来构造大卷积核。对于 H
×W 维输入和通道C,构造K×K 核的深度卷积和深度膨

胀卷积的核大小方程如式(1)和(2)所示。

DW = (2d-1)×(2d-1) (1)

DW -D =
K
d ×

K
d

(2)

可变形卷积基于特征本身学习形变,实现自适应卷积

核的生成。这种灵活的卷积核形状有助于更好地捕捉海

岸线边界特征,从而提高了目标特征的捕捉能力。负责计

算偏移的卷积层遵循其相应卷积层的核大小和膨胀。对

于不在图像网格上的偏移量,采用插值来计算像素值。

D-LKA模块特征提取输出可以表述为:

Attention=Conv1×1(DDW -D -Conv(DDW -
Conv(F')) (3)

Output=Conv1×1(Attention􀱋F')+F (4)
其 中,输 入 特 征 表 示 为 F ∈ RC×H×W,F' =

GELU(Conv(F))。注意力分量Attention∈ ℝC×H×W 表

示为注意力映射,每个值表示相应特征的相对重要性。运

算符 􀱋 表示按元素的乘积运算。DDW-Conv表示可变形

深度卷积,DDW-D-Conv表示可变 形 深 度 膨 胀 卷 积,

Conv1×1表示1×1卷积。

3 实验设计与分析 

3.1 数据集简介

  本研究采用空中摄影地图(aerial
 

photo-maps)数据

集[20],该数据集是结合了高分辨率航空摄影图像和地图元

素(如标签、街道名称和重要地标)的地图。该数据集包含

了成对的航拍所得的遥感图像以及对应的谷歌地图。该

数据集总共训练集包括1
 

096对图像,测试集包括1
 

098
对图像,每对图像的像素尺寸为600×600。如图6所示,
本文经过图像二值化,从中挑选出包含海洋和陆地的数据

样本共340对,处理出标准图像,将无用的语义特征去除。

图6 Aerial
 

photo-maps数据集样本图

Fig.6 Aerial
 

photo-maps
 

dataset
 

sample
 

image

本文基于谷歌地图的灰度图像,人工标定海洋位置初

始种子,采用区域生长法将地图分为海洋与非海洋目标的

二值图像,以此作为遥感影像对应的标注数据。模型评估

采用100对样本作为训练集,240对样本作为测试集。

Aerial
 

photo-maps数据集提供了城区与海洋的遥感

信息,可用于海岸线变化监测,从而指导陆地及基础海防

设施的建设。

3.2 实验环境

  如表2所示为本次实验所用的计算机配置和实验

环境。

3.3 评价指标

  为了量化评估本文提出的模型的有效性,本文采用了以

下4种评估指标,包括Dice相似系数(DC)、Jaccard指数(JA)、
灵敏度(SE)和精确度(AC)。评价指标如式(5)~(8)所示。
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表2 计算机配置和实验环境表

Table
 

2 Computer
 

configuration
 

and
 

experimental
 

environment

设备名称 型号

GPU Tesla
 

V100
CPU Core

 

i7-13900K
操作系统 Ubuntu

 

20.04
编程语言 Python

 

3.7.3
深度学习算法框架 PyTorch1.13.1

加速库 CUDA11.6

DC=
2×TP

(2×TP+FP+FN)
(5)

JA =
TP

(TP+FP+FN)
(6)

SE =
TP

TP+FN
(7)

AC =
TP+TN

TP+FP+TN +FN
(8)

DC(Dice系数)和JA(Jaccard指数)是用于评估预测

的图像分割结果与真实标签之间重合程度的标准。精度

(AC)衡量的是模型预测的准确性,而敏感度(SE)衡量的

是模型预测的完整性。

3.4 实验结果分析

  图7对比了本文方法与DeepLabV3+的模型参数量,
相比于原始网络结果,本文模型参数量也从54

 

713
 

557减

少到8
 

603
 

375,减少至原网络的1/6,有效降低了模型的计

算开销。

图7 参数量比较

Fig.7 Parameter
 

quantity
 

comparison

为了获得本文方法的最优参数,表3对比了不同优化

方法、学习率、批大小、迭代次数的模型准确率。
在比较Adam优化器与随机梯度下降法(SGD)后发

现,Adam在平均精度和训练收敛速度上均优于SGD。在

学习率的设置上,实验对比了0.001、0.0001、0.0002三个

不同设置,结果显示0.001的学习率能够获得更好的检测

效果。迭代次数的实验表明,当迭代次数达到60次时,模
型性能趋于饱和。最后,通过对批大小进行比较,发现当

批大小设置为8时,模型表现最佳。根据模型训练损失图

8可以看出,模型经过60个epoch时趋于收敛。

为了进一步证明本文提出的模块的有效性,本文分别

基于50对训练数据以及100对训练数据进行了以下消融

实验。以原始的deeplabv3+作为基准,通过控制不同主干

网络、特征提取模块以及上采样模块的加入与否进行实验

分析,验证模块的有效性,实验结果如表4、5所示。从表中

可知,本文算法的精度、灵敏度、Dice系数、Jaccard指数均

优于其他组合方法,表明本文算法具有较强的分割能力,
总体性能较好。

表3 参数优化实验表

Table
 

3 Parameter
 

optimization
 

experiment
实验
编号

优化方法 学习率 批大小
迭代
次数

准确率
/%

1 SGD 0.000
 

1 4 50 95.65
2 SGD 0.000

 

2 4 50 95.78
3 AdamW 0.000

 

1 4 50 95.73
4 AdamW 0.000

 

2 4 50 95.84
5 AdamW 0.000

 

1 8 50 96.02
6 AdamW 0.000

 

1 16 50 95.38
7 AdamW 0.000

 

1 32 50 95.39
8 AdamW 0.001 4 50 95.93
9 AdamW 0.001 8 60 96.77
10 AdamW 0.001 8 40 94.41
11 AdamW 0.001 8 80 96.63

图8 模型训练损失曲线图

Fig.8 Model
 

training
 

loss
 

curve
 

chart

表4 50对训练数据消融实验

Table
 

4 Ablation
 

experiment
 

with
 

50
 

pairs
 

of
 

training
 

data

实验
编号

Efficien
tnetB0

DA
SPP

DUpsa-
mpling

AC SE DC JA

1 88.27 85.36 82.15 79.23
2 √ 90.33 86.41 84.76 81.57
3 √ 89.10 87.38 83.76 81.03
4 √ 90.86 86.75 84.12 81.28
5 √ √ 91.74 88.32 85.34 81.98
6 √ √ 92.03 89.21 85.97 82.13
7 √ √ 91.98 89.19 85.24 81.83
8 √ √ √ 92.73 89.70 86.34 82.67

为了进一步验证模型的性能,对各组消融对比方法进

行10次重复统计验证,以10次结果的均值与方差作为模

型性能的对比指标,结果如图9、10所示。从图中可以发
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现,本 文 算 法 在 具 有 较 高 的 精 度、灵 敏 度、Dice系 数、

Jaccard指数的同时,其误差分布范围在大部分情况优于对

比方法,模型稳定性较好。
表5 100对训练数据消融实验

Table
 

5 Ablation
 

experiment
 

with
 

100
 

pairs
 

of
 

training
 

data

实验
编号

Efficien
tnetB0

DA
SPP

DUpsa-
mpling

AC SE DC JA

1 92.52 90.34 87.52 81.53
2 √ 93.36 91.08 87.81 83.74
3 √ 92.61 90.75 87.64 82.83
4 √ 93.47 91.46 88.10 84.36
5 √ √ 94.78 91.89 88.93 85.31
6 √ √ 95.63 92.43 89.41 85.97
7 √ √ 95.47 92.18 88.96 85.55
8 √ √ √ 96.77 93.03 90.42 86.67

图9 50对训练数据消融实验

Fig.9 Ablation
 

study
 

on
 

50
 

pairs
 

of
 

training
 

data

图10 100对训练数据消融实验

Fig.10 Ablation
 

study
 

on
 

100
 

pairs
 

of
 

training
 

data

  为进一步验证模型性能,本文对比了FCN(全卷积网

络)、DeepLabV3+模型、U-net模型、PSPNet[21]等典型分

割方法。图11为不同方法的分割效果图,从图中可知,

FCN
 

和
 

DeepLab
 

V3+两个分割模型,海岸线边缘划分较

模糊。而目前主流网络U-net和PSPNet在分割清晰度上

与本研究提出方法不相上下,但是在背景不同的情况下细

节处理方面有所缺失,有众多边缘细小噪声块,网络并不

适用复杂背景下的遥感图像分割中。而本文方法分割精

度与实际分割边界十分接近,并且在有复杂背景影响下,
分割效果图中,没有明显噪音块。

上述各算法的具体性能如表6所示。从表6中可得,
本文提出的海岸线遥感图像分割网络取得了比较好的实

验效果。准确率相比于其他网络模型提高了2.26%~
  

图11 不同模型实验结果图

Fig.11 Comparison
 

chart
 

of
 

experimental
 

results
 

for
 

different
 

models

表6 本研究实验对比结果

Table
 

6 Comparison
 

results
 

of
 

experiments
 

in
 

this
 

study

网络模型 AC SE DC JA
FCN 86.52 89.56 84.89 83.56
U-Net 93.82 92.61 89.62 85.33
PSPNet 94.15 91.85 85.82 84.72

DeeplabV3+ 92.52 90.34 87.52 81.53
本研究方法 96.77 93.03 90.42 86.67

10.25%,灵敏度提高了0.42%~3.47%,相似系数提高了

0.8%~5.53%,Jaccard系数值提高了1.34%~4.14%,
性能提升明显。

4 结  论

  本文提出改进的DeepLapV3+的海岸线遥感图像高

效分割模型,以EfficientNet-B0作为主干架构,成功强化

了图像内部特征的提取,利用改进的D-ASPP架构提升模
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型对复杂边界的分割能力,引入了DUpsampling技术,实
现对目标特征更为细致的关注,使得网络在图像分割任务

中更加精准。但由于本文方法的特征提取设计,使得模型

更容易过拟合与当前数据集特征,模型在未知数据集泛化

性能有待提升。如何提升模型对于海岸线泛化特征的提

取将是未来研究工作的重点。
本文方法针对复杂背景下不规则海岸线的分割及检

测更加准确,能够提高国防测绘、海岸线检测、灾害预警等

应用的效率和精度。
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