GRS I G N
ELECTRONIC MEASUREMENT TECHNOLOGY

A8 24 W
2025 4 12 H

. - oL A
12 *
[Jore—

DOI:10. 19651/j. cnki. emt. 2519745

E FXi#H M DeepLabV3+ i EZ&IERE &

SEIE

&M
(P B AT RBEAF LR &% 710089)

W OE B R B R MR AT TE A U s SN A Ak 43 TR M Y R R, A SCHR LT R X R 2 I A B 1Y I R G
E M 45 (AMDNet) . LI Deeplabv3 +4F 4 3 1 M 4% , 38 i3 fff 1 EfficientNet-B0 1 A F#AF 2 BUAS , KR B AG M 2% 31 5B
IFTEM Y ASPP tg] A D-LKA B, B840 b 0 3% 1 ok 18 5% bn vE 45 TR0 SR AL AL # L A7 48 B R0 8 SR A I
& 45 & DUpsampling FAR SEI F SR AR b 72 v 0 w3 0 BE G Jt L 32 3 R 40 B A 86 2 . AMDNet BEBIZE Aerial photo-
maps B A HETE R R BUE Dice Fl Jaccard 735135 5] T 96. 77 % ,93. 03% .90. 42% .86. 67 %6 , PEREFE THH 8.,
KW L E BRI 5 E] s DeepLabV3-+ ; 7] 48 K A% i 7% 7 ; EfficientNet

hESES: TP391.4;TNILL. 73 NEARIREG: A BERKEFBSERB: 520.6040

Coastal remote sensing image segmentation method
based on the improved DeepLabV3-
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Abstract: Aiming at the difficulty in fine segmentation of irregular boundaries in coastal remote sensing images, this
paper proposes an Asymmetric Multi-path Decoding Network for Coastline Segmentation ( AMDNet). Taking
Deeplabv3+ as the backbone network, the network uses EfficientNet-B0 as the feature extractor to significantly reduce
the computational load of the network. Additionally, the D-LKA module is introduced into the improved ASPP to add
extra offsets for adjusting the sampling positions of standard convolution, allowing the convolution kernel to flexibly
adjust the sampling grid. Combined with DUpsampling technology to achieve high-precision restoration during the

upsampling process, the accuracy of image segmentation is improved. The accuracy, sensitivity, Dice and Jaccard of

the AMDNet model on the Aerial photo-maps dataset reach 96.77% ., 93.03%, 90.42% and 86.67% respectively,

showing a significant performance improvement.
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Fig. 2 MBConv structure diagram
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Table 2 Computer configuration and experimental environment
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GPU Tesla V100
CPU Core i7—13900K
BER G Ubuntu 20. 04
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Fig. 7 Parameter quantity comparison
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Table 3 Parameter optimization experiment

o 2 S S
1 SGD 0. 000 1 4 50 95. 65
2 SGD 0.000 2 4 50 95.78
3 AdamW 0. 000 1 4 50 95.73
4 AdamW 0. 000 2 4 50 95. 84
5 AdamW 0.000 1 8 50 96.02
6 AdamW 0.000 1 16 50 95. 38
7 AdamW 0. 000 1 32 50 95. 39
8 AdamW 0. 001 4 50 95.93
9 AdamW 0. 001 8 60 96.77
10 AdamW 0. 001 8 40 94. 41
11 AdamW 0.001 8 80 96. 63
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Fig. 8 Model training loss curve chart
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Table 4 Ablation experiment with 50 pairs of training data
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3 N 89.10  87.38 83.76 81.03
4 N 90.86  86.75 84.12 81.28
5 N/ J 91.74  88.32 85.34 81.98
6 J NG 92.03  89.21 85.97 82.13
7 J J 91.98  89.19 85.24 81.83
8 N N N 92.73  89.70 86.34 82.67
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Table 5 Ablation experiment with 100 pairs of training data
£y Efficien DA DUpsa-
AC SE DC A
%5 tnetB0O  SPP  mpling ¢ S ¢ I

92.52  90.34 87.52 81.53
2 J 93.36  91.08 87.81 83.74

3 N, 92.61  90.75 87.64 82.83
4 N, 93.47  91.46 88.10 84.36
5 / N, 94.78  91.89 88.93 85.31
6 N/ N 95.63 92.43 89.41 85.97
7 J Ni 95. 47 92.18 88.96 85.55
8 N / N 96.77  93.03 90.42 86.67
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Fig. 9 Ablation study on 50 pairs of training data
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Fig. 10 Ablation study on 100 pairs of training data
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Fig. 11 Comparison chart of experimental results for different models
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