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Attitude study of second-order Kalman filter based on nine-axis
MIMU on unsteady platform

Nie Junxi  Kang Jianjun Jing Jialu Li Hulin  Liu Chaoran

(National Ocean Technology Center, Tianjin 300112, China)

Abstract: The dynamic marine environment induces platform motions that compromise the reliability of ocean
observation platforms and measurement instruments, leading to errors in the measurement of ocean dynamic
parameters such as wind, waves and currents. Throughout its deployment and operational cycle, an ocean observation
platform experiences irregular motions. Conventional attitude estimation algorithms based on a nine-axis Micro Inertial
Measurement Unit (MIMU), such as Kalman filtering or complementary filtering, often fail to achieve timely
convergence, resulting in significant errors in attitude computation. To address this issue, this study proposes a two-
stage extended Kalman filtering system for MIMU-based attitude estimation. In the first stage, the system utilizes
acceleration data to estimate the initial attitude angles, thereby improving filter convergence speed. In the second stage,
it employs hierarchical processing of roll, pitch, and yaw angles to enhance system robustness. Laboratory and field
experiments at sea demonstrate that the proposed method achieves rapid convergence and high-accuracy attitude
estimation for ocean observation platforms operating under non-stationary motion conditions.
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Fig. 1 Design of the second-order extended Kalman filter algorithm
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Table 4 Comparison of the effects of the three methods

in experimental mode three

RMSE MAE MaxAE
WAf ik SNR/AB (0)/ (0)/ a("o)/

Z %% EKF 21.4558 0.3968 0.3236 0.91638
0 MTI-3 20.6326 0.4827 0.3914 1.2482
Mahony 20.2210 0.4716 0.3699 1.1825

x5 ZEHEAEE3MHAELRI
Table 5 Comparison of the effects of the three methods

in experimental mode four

BE RMSE/ MAE/ MaxAE/
J7 SNR/dB
Vil @ @) )

L2705 0.8719
.5234 1.4687
347 7 3.438 4
028 7 3.2019
L4795 5.2175
.5311 8.407 4

“ 2% EKF 22.077 4 0.3209

% MTI-3 17.6125 0.634 8
Mahony 9.801 7 1.558 3

2 EKF 30.6965 1.19438

¢ MTI-3 29.794 2 2.679 4
Mahony 20.753 0 3.2451

D N = O O

A4, LA 7 MTI3 (9 RMSE #il 7+ & 11.4°,
MaxAE # id 22°, Mahony ¥ & ik 16.9°/31. 9%, T — %
EKF 340 1. 87°/4. 05°, X 2% B 7E 5t Z & 1k 9t T i
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Table 6 Comparison of the effects of the three methods

in experimental mode five

LA . RMSE/ MAE/ MaxAE/
ff ik SNR/dB &) ) &)

Z# EKF 21.3220 0.2564 0.2028 0.800 6

7 MTI-3  17.7610 0.4618 0.3789 1.0986

Mahony  3.021 8 3.7462 3.0552 7.964 6

T4 EKF 23.016 3 0.2015 0.3007 0.659 8

0 MTI-3 18.6029 0.3535 1.7717 0.8090

Mahony 4.438 6 2.3289 0.9330 5.9598

T4 EKF 24.7344 1.8679 1.6058 4.0515

¢ MTI-3  8.8883 11.4401 2.3447 22.2861

Mahony ~ 3.001 6 16.8823 5.027 5 31.854 0
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Table 7 Comparison of the effects of the three methods

in experimental mode six

N . . RMSE/ MAE/ MaxAE/
4 Ji#k SNR/dB “ “ “

T2 EKF 22.2290 0.2360 0.1849 0.726 3

y MTI-3  22.7723 0.4181 0.3642 0.9165

Mahony 3.500 0 3.5455 2.7613 8.5650

T %% EKF 22.1594 0.2418 0.1889 1.002 1

0 MTI-3  22.006 3 0.246 4 0.1890 0.7589

Mahony  4.164 2 2.547 7 1.8913 6.999 0

Y% EKF 13.9237 7.7759 6.3500 16.254 8

¢ MTI-3
Mahony

9.880 9
3.787 2

12.444 7 10.180 1 27.366 5
14.729 5 12.666 9 29.124 2
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Fig. 11  Attitude data of the pitch and roll angles of the

offshore platform
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