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Research on tidal measurement with Sigal-BDS buoys via network RTK

Jiang Xiaoyu Zhou Wenging Shao Yi
(Key Laboratory of Marine Observation Technology, Ministry of Natural Resources, Nation Ocean Technology Center,

Tianjin 300110, China)

Abstract: High-precision tidal level data serves as a critical foundation for marine scientific research and engineering
applications. With the expansion of modern marine activities, the demand for offshore long-distance tidal level
information continues to grow. To further advance the acquisition of offshore high-precision tidal level data, this study
conducted feasibility testing, accuracy research, and attitude compensation impact analysis for single-Beidou buoy tidal
level measurement based on network RTK technology. Experimental results indicate: regarding elevation,
incorporating attitude compensation effectively reduces errors and enhances measurement accuracy. Without attitude
compensation, the maximum absolute error in tide level measurement was 4. 10 cm, with an average deviation of 1. 34
cm and a standard deviation of 1. 54 cm, achieving an accuracy of 1. 96 cm. With attitude compensation applied, the
maximum absolute error decreased to 3.30 cm, the average deviation reduced to 1.14 cm, the standard deviation
decreased to 1.44 c¢m, and the accuracy improved to 1.75 cm. Regarding phase, the overall phase lag variation
remained within 4°, Adding attitude compensation showed no significant effect on improving phase shift. Therefore, a
single-Beidou buoy based on network RTK demonstrates certain feasibility for tide level measurement. In fields such as
smart waterway construction and hydrographic surveying, a single-Beidou tide gauge buoy based on network RTK
holds promising application prospects.

Keywords: network RTK;single BDS buoy;tidal measurement
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Fig. 3 Experimental location diagram
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Fig. 6 The absolute value change of the tilt angle amplitude
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Table 1 Fitting analysis results
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A b RIMA A RIMA mA RIMA A
T TR Eer mmwe [0 wswe mene 5 wsne mii
Bl AR T | A R Bl R T | A R Y Sl AR T A S 7
2025-06-08  06:00~16:00 0.999 7 0.999 5 0.999 4 162.2 162.7 162. 2 1.7 —1.9 —1.9
2025-06-08  19:00~04:00 0.999 0 0.997 7 0.997 6  102.2 103. 6 103.9 —6.6 —9.7 —9.7
2025-06-09  07:00~17:00 0.999 7 0.999 1 0.9991 178.1 177. 8 177.3  —13.1 —13.1 —13.1
2025-06-09  20:00~05:00 0.955 2 0.952 0 0.954 5 114.1 115.9 116.3  —19.5 —21.8 —21.8
2025-06-10  08:00~18:00 0.999 5 0.999 5 0.999 5 196.1 198. 2 197.6  —42.7 —42.4 —42.4
2025-06-10  20:00~05:00 0.998 6 0.997 1 0.997 2 112.7 112.5 112.8 —41.8 —42.0 —41.9
2025-06-11  08:00~18:00 0.999 7 0.999 6 0.999 6  196.0 200. 1 199. 3 45.2 44.6 44.7
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Table 2 Analysis of Beidou buoy tide measurement accuracy
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