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Wind turbine health state prediction based on CSSA-CatBoost-LSTM

Sun Jiadong' Li Ziheng® Chen Deji'  Shi Pei*
(1. Excellent Science and Technology Innovation Teams of Jiangsu Universities (Real-time Industrial Internet of Things) ,
Wuxi University, Wuxi 214105, China;2. School of Computer Science, Nanjing University of Information Science and

Technology, Nanjing 210044, China)

Abstract: To address the issues of insufficient feature extraction and inadequate prediction accuracy of single models in
wind turbine condition forecasting, this study proposes a wind turbine operational condition prediction method that
integrates the CatBoost algorithm with the Long Short-Term Memory network (LSTM). Firstly, based on the wind
turbine sensor features and temporal features, the SVFE (a feature extraction method, assume its full name is known
in the specific context) and MVFE (another feature extraction method, assume its full name is known in the specific
context) methods are employed for cross-fusion to generate global composite features. Additionally, feature dimension
reduction is achieved by incorporating grey relational analysis improved with the entropy weight method. Secondly, the
Sparrow Search Algorithm (SSA) enhanced by chaotic mapping, termed CSSA, is introduced to conduct global
optimization of the hyperparameters of the LSTM model, enabling adaptive screening and precise determination of the
optimal parameter combination. Finally, the CatBoost model and the optimized LSTM model are deeply fused using an
optimal weighted combination strategy to enhance prediction accuracy and model generalization capability. Taking the
wind turbines of a phosphorus chemical enterprise in Yichang, China, as an example, the proposed CSSA-CatBoost-
LSTM wind turbine condition prediction method was validated. The validation results demonstrate significant
improvements in both accuracy and reliability of this method.

Keywords: CatBoost; long short-term memory network; entropy weight method; grey correlation analysis method;

sparrow search algorithm;chaotic mapping
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Table 2 Calculation results of the correlation degree before

and after improving the original features of the wind turbine

P I AL i - b8 h

KA HEF KA HEF
FEERSEE(VY) 0.5387 3 5.2615 0.5329 4
Wi RS M (AV)  0.5433 2 5.5548 0.5371 2
KEIRSEE(HY) 0.5375 5 51153 0.5319 5
Ll L R (BOD 0.5342 6 2.2292 0.5317 6
WM (VA)  0.5384 4 4.6415 0.5333 3
W E S R(LS) 0.5921 1 5.7600 0.585 1 1
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Table 3  Calculation results of correlation degree before and

after timestamp fan feature improvement

P AL it i AR
KA e E KA P
BO-year  0.983 9 1 2.229 2 0.979 4 1
LS-hour  0.7880 2 7.510 6 0.775 9 2
LS-day 0.769 3 3 7.764 0 0.757 0 3
LS-month 0.757 7 4 7.150 5 0.744 6 5
VA-day 0.7559 5 7.297 5 0.746 7 4
VA-hour 0.752 3 6 7.030 2 0.741 5 6
AV-day 0.739 7 7 7.994 1 0.727 6 7
AV-hour  0.727 9 8 7.7156 0.716 4 8
VV-day 0.723 1 9 7.847 1 0.711 5 9
VV-hour 0.717 9 10 7.566 0 0.706 8 10
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Table 4 Comparison of prediction results of

five different models

f Eyse  Ewae R* % Ej‘ fia
/% /% /% /min
BP-SVM 44. 24 34. 21 88.72 15
GBDT 39. 32 30. 31 91.08 12
LSTM 22.04 48. 58 97. 15 43
LSTM-Transformer 21.83 17.09 97.32 52
FE-CSSA-LSTM-CatBoost  11. 83 7.05 99. 49 46
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Fig. 6 Comparison between actual values and predicted

values of five models

T RN WO 55 52 BB 2 (8] Y 22 5, B A A] SO0
PSS, B 7 R T 5 R Y Bk 2
i, GBDT #5845 22 76 A M i B AL 2 70, BAR B4k I
VA B S P A (LB 2 1 43 AT 3 PRI A ) 3% A 7 L 2 i [
PR B IRZ 8 K. BP-SVM BEIAHE: T GBDT. 5% 2
B I 201 91 PR B R, HL AR e 2 X I gk 22 O B AR R BI R AR
SR E BT R E K R T BE T B85 . LSTM 53 5% 2% 43
AN A, S FEH LT g, Ba it LSTM Bl
TR HE I [B] 77 B R AF O T B A — 5 B, (BT A 356 43 B 1]
ER EHFERKIEZ, LSTM-Transformer £ %1 (1) 5% 24 78
T B 3T 5 B A S A 43 A U B R A R AR DN, R B
IZAE AR 48 A LSTM M Transformer B L85, BEMEE A
AR A B A ) 30 oh B e X BUMORS R A TR . A
SCAF AR AL, R AE 0. 07 A/ SR 2ZE S E o &, B
RIS Z A B W ol B G TR0 e R AR 8 1 L BB S
ARk 2D T R 2%

20 . L 20 , .
0 500 1 000 0 500 1 000
B ) 25K B ) 25K
(a) GBDTHI5R % E (b) BP-SVMI 5% %
(a) The residual plot for GBDT (b) The residual plot for BP -SVM
20 20 2071
10 10 ) 10p v
# S abe s S # S SR G
10 -10 ) -10}
20k . . -200 - L 200 . .
0 500 1 000 0 500 1000 0 500 1 000
I ) 25 4 I ) 35 4 IR 1R 25 4
(c) LSTMI 5% 2 (d) LSTM-Transformer {132 2 & (e) FE-CSSA-LSTM-CatBoost 5 % &l

(c) The residual plot for LSTM

Fig. 7

(d) The residual plot for LSTM-Transformer

7 FLRR A [ R A 1 5% 22 X L ]

Residual comparison plot for five different model

(e) The residual plot for
FE-CSSA-LSTM-CatBoost

+ 173



548 4

v F o

T # K

W 8 fiw  JB/R T 5 i 35 I AR 8 £ IXUAIL ¥R 5 T8 £
S tERER L. B 6 hik B BT S AT RS B
Pl C AP A D DU ML X IR T PR 40 M. I 8(a) ~
() 43590 A%k iy DX 3 JRy 3 5 R IRT . DA TBT 8 F T 35 e O %

- —

= *= FE-CSSA-LSTM-CatBoost
45t
i .
w0 F N\, .
\ " A
o A 27
= 35 W 7
= W, R
EE \n Y4
30 b \\\\\ /// 7 7
AN ,/’,’ 4
F
25 | s 5%
A\
[ 4
20 F
23.0 235 24.0 24.5 25.0
i ) 2B
(a) DX A A FRIASE 2R %of EE P

(a) Comparison chart of the interval A model

45
gr T
RN = -
40 1 -2z 7 » > o
o ¥ \\\ 1
o | LEF :
by _ v o \
m| ¥ N
W
| w
30 W
W
%
W
25+ v
N
)

1140 1145 1150 1155 116.0

I [ 254
(c) X IRICHIAE AL 0T L &

(c¢) Comparison chart of the interval C model

- ~-GBDT -+
- +-BP-SVM

B 75 IR AR AL T FA B B, FE-CSSA-LSTM-CatBoost £ #1
F TN 52 22 55 GBDT BEARZ 29% , 38 BP-SVM F#1IK 332
T B 587 B B, o ot A TR A 3R 22 0 (475 (R T 1% Gt R Y
20%~30%,

LSTM
LSTM-Transformer
45 i ,"
40 | 7R\
S x \\
35+ 2,783,
NN
17544 Y \\
o 30r g A
L prd \
gé . ,/”7 \\ \
20+ v/ O\
# N W
]5 [ ¥ \\\ \\
A
10 2,
5t ¥
69.0 695 700 705 71.0
P S
(b) X IAIB IR X EL P
(b) Comparison chart of the interval B model
40 .
35| K
- 4
7
&) 0F II /7’
= 7
m 251 ’/ Y
EE 20 F ' // ”
Ky o
15 SRS 7l
N {\\\; /,//
10 Y’
233.0 2335 2340 2345 2350
i ) 2
(d) X MDA % L

(d) Comparison chart of the interval D model

PR 8 A A A TN A 45 52 s 1 B4 JR A 0 L ]

Fig. 8

FERDPAG 45 R EDIE T X — 2598 7F 4 ALk 4E
CSSA-LSTM-CatBoost £ # [ 3F- ¥ RMSE # GBDT B ik
43.1% % BP-SVM [&AI% 39. 7% ; R* fHM GBDT f9 0. 75~
0. 80 il BP-SVM 4 0. 72~0. 78 $2F+ % 0. 91~0. 94, 74
UEB T Btk vk A B Ak Tl 5 v A stk

W 5 From , Tl SE 56 F0HE 15 H 5 AR R 4 R
B (SSAMALHY LSTM K% LSTM-SSA Ml it 4 J5 18 &
MET LSTM MRt @ siae 1, (HZ R T SSA Bk 5 4
A R Ee AR e B AT AR e AR A s 1], 2R 0 IXUAIL iR
J 50 r =l S R T 0 A N RE K 59 L 49 0 A T S bR U B
By B, IO 55 1 S AE 1) i i 25 5 B0 22 98 A it 55

1E LSTM-SSA Al E 5| A CatBoost B B $i Tk A5 B )
D T 90 v B BT B R XA ) R R AE L O
5 LLSTM-CatBoost #8254 5 TFE-LSTM-CatBoost, £
R TR KR E e R 1.095,R” TR 98.83%,
IUE T TFE BEH e RRAE 48 B 1 09 M3 3 6y . HLAR T
B A 2 T B AR (S B R B A IR R IR A O A BT

o 174 -

Local comparison of predicted and measured values among five models
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Table 5 Prediction error results of single model

and combined model

e E vse Eyvae R* UIE ]

il .
/% /% /% /min

FE-LSTM 22.04 14.86  97.36 43
FE-CatBoost 19.17  27.31  97.77 20
L.STM-CatBoost 19.94  12.18  98.58 65
FE-LSTM-CatBoost 18.04  10.95  98.83 58
FE-CSSA-LSTM-CatBoost  11. 83 7.05 99. 49 46

3 Ao 1 A Y K 68 G BK  Ar (TFE) L8 LSTM-

CatBoost Ji » R E yep WA L TF(199. 35) JH E yup B[
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