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摘 要:针对风机状态预测中特征提取不充分及单一模型预测精度不足的问题,提出一种融合CatBoost算法与长短期

记忆网络(LSTM)的风机运行状态预测方法。首先,基于风机传感器特征和时序特征,使用SVFE和 MVFE方法交叉融

合生成全局复合特征,并结合熵权法改进的灰色关联分析实现特征降维。其次,通过引入混沌映射改进的麻雀搜索算法

(CSSA)对LSTM模型超参数进行全局寻优,实现最优参数组合的自适应筛选与精准确定。最后,通过最优加权组合策

略对CatBoost与优化后的LSTM进行深度融合,以提升预测精度与模型泛化能力。以中国宜昌某磷化工企业风机为例,
对所提CSSA-CatBoost-LSTM风机状态预测方法进行了验证,验证结果表明该方法在准确性和可靠性方面有显著提升。
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Abstract:
 

To
 

address
 

the
 

issues
 

of
 

insufficient
 

feature
 

extraction
 

and
 

inadequate
 

prediction
 

accuracy
 

of
 

single
 

models
 

in
 

wind
 

turbine
 

condition
 

forecasting,
 

this
 

study
 

proposes
 

a
 

wind
 

turbine
 

operational
 

condition
 

prediction
 

method
 

that
 

integrates
 

the
 

CatBoost
 

algorithm
 

with
 

the
 

Long
 

Short-Term
 

Memory
 

network
 

(LSTM).
 

Firstly,
 

based
 

on
 

the
 

wind
 

turbine
 

sensor
 

features
 

and
 

temporal
 

features,
 

the
 

SVFE
 

(a
 

feature
 

extraction
 

method,
 

assume
 

its
 

full
 

name
 

is
 

known
 

in
 

the
 

specific
 

context)
 

and
 

MVFE
 

(another
 

feature
 

extraction
 

method,
 

assume
 

its
 

full
 

name
 

is
 

known
 

in
 

the
 

specific
 

context)
 

methods
 

are
 

employed
 

for
 

cross-fusion
 

to
 

generate
 

global
 

composite
 

features.
 

Additionally,
 

feature
 

dimension
 

reduction
 

is
 

achieved
 

by
 

incorporating
 

grey
 

relational
 

analysis
 

improved
 

with
 

the
 

entropy
 

weight
 

method.
 

Secondly,
 

the
 

Sparrow
 

Search
 

Algorithm
 

(SSA)
 

enhanced
 

by
 

chaotic
 

mapping,
 

termed
 

CSSA,
 

is
 

introduced
 

to
 

conduct
 

global
 

optimization
 

of
 

the
 

hyperparameters
 

of
 

the
 

LSTM
 

model,
 

enabling
 

adaptive
 

screening
 

and
 

precise
 

determination
 

of
 

the
 

optimal
 

parameter
 

combination.
 

Finally,
 

the
 

CatBoost
 

model
 

and
 

the
 

optimized
 

LSTM
 

model
 

are
 

deeply
 

fused
 

using
 

an
 

optimal
 

weighted
 

combination
 

strategy
 

to
 

enhance
 

prediction
 

accuracy
 

and
 

model
 

generalization
 

capability.
 

Taking
 

the
 

wind
 

turbines
 

of
 

a
 

phosphorus
 

chemical
 

enterprise
 

in
 

Yichang,
 

China,
 

as
 

an
 

example,
 

the
 

proposed
 

CSSA-CatBoost-
LSTM

 

wind
 

turbine
 

condition
 

prediction
 

method
 

was
 

validated.
 

The
 

validation
 

results
 

demonstrate
 

significant
 

improvements
 

in
 

both
 

accuracy
 

and
 

reliability
 

of
 

this
 

method.
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0 引  言

  随着工业4.0和智能制造的快速发展,旋转机械设备

的健康状态监测与故障预测在能源、化工、冶金等重工业领

域的重要性日益凸显[1]。作为工业生产的核心动力设备,
风机的稳定运行直接关系到生产安全、能效优化和设备寿
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命。以磷化工行业为例,罗茨风机在原料输送、废气处理等

关键环节中承担着不可替代的作用,其故障可能导致生产

中断、环境污染甚至安全事故[2]。因此,准确预测风机运行

状态以保障其正常运行,对确保工业生产的稳定性与高效

性具有重要意义。
近年来,风机状态预测技术作为保障设备可靠运行的关

键手段,已取得显著进展。现有方法主要分为3类:基于物

理模型的方法[3-4]、基于传统数据驱动的方法[5-6]以及基于深

度学习的方法[7-8]。基于物理模型法虽能深入剖析风机运行

机理,但受限于风机结构复杂性与运行环境不确定性,存在

精确建模难度大、计算复杂度高及实时应用困难等问题。传

统数据驱动方法虽可提升预测精度并丰富数据,但存在解释

性不足,且在处理风机数据时面临特征提取与泛化性能受限

的挑战。鉴于上面两种方法的局限性,基于深度学习的预测

方法逐渐成为研究热点,其中循环神经网络(recurrent
 

neural
 

network,RNN)及其变体的应用最为广泛。
长短时记忆网络(long

 

short-term
 

memory,LSTM)凭
借其对风机数据时序性与非线性关系的建模能力[9-10],及
CatBoost算法具备出色特征识别能力,在风机状态检测领

域得到广泛应用[11]。当前研究为提升模型的预测精度,主
要聚焦于多模型融合策略与超参数智能调优技术两大方

向。例如:文献[12]构建了卷积神经网络、LSTM和注意力

机制的组合模型,实现电站风机状态的多工况适应性预测。
文献[13]提出了由自适应噪声完备集成经验模态分解与反

向传播神经网络组成的组合模型,通过改进麻雀搜索算法

(sparrow
 

search
 

algorithm,SSA)算法对反向传播神经网络

的超参数进行寻优,以提升风机功率短期预测精度。现有

研究虽可提升风机状态预测的精度,但仍存在因模型输入

特征维度不足,特征关联性低、或优化算法改进不足导致的

风机状态预测效果欠佳、时间成本较高等的问题。
在预测特征选择方面,风机异常时会伴随振动、发热和

噪音等物理现象[14]。尽管三者均可用于风机预测和故障

识别,但振动和噪音易受环境噪声干扰且信号处理流程复

杂[15],而温度特征凭借数据采集成本低、信号处理逻辑简

单、工业现场适配性强等显著优势,成为当前风机状态预测

领域的优选技术方案[16-17]。
本文结 合 LSTM 和 CatBoost的 优 势,建 立 了 基 于

CatBoost-LSTM的风机工作温度预测模型,同时,为了降

低特征冗余,减少网络计算负担,本文提出了一种基于距离

相关 系 数 的 最 小 冗 余 最 大 相 关 (minimal-redundancy-
maximal-relevance,mRMR)算法用于特征筛选。本文对残

差信号使用贝叶斯检验,以达到在线监测和预警的效果。
综上所述,本文提出一种基于混沌映射改进麻雀搜索

算法(chaotic
 

sparrow
 

search
 

algorithm,CSSA)优化类别提

升与LSTM耦合的风机状态预测方法。在特征工程阶段,
从时间戳、原始特征中提取年、月、日、振动等新特征并将其

交互扩展特征集,后运用信息熵加权的灰色关联分析方法

筛选扩展的特征集,实现原始特征降维与关键特征提取,进
一步提升预测精度。并且运用Tent混沌算法对麻雀搜索

算法进行改进,可以优化算法的收敛速度,使算法更快地找

到最优 解。然 后,利 用 最 优 加 权 组 合 法 将 CatBoost和

LSTM模型进行加权组合,将两组特征作为模型的输入特

征进行模型训练;最后,利用某磷化工企业实际风机运行数

据对所提方法和模型的预测精度进行验证,为风机故障预

警提供了兼具理论创新性与工程实用性的解决方案。

1 基本理论

1.1 CatBoost模型   
  CatBoost是 一 种 基 于 梯 度 提 升 决 策 树 (gradient

 

boosting
 

decision
 

tree,GBDT)框架构建的集成学习算法。
通过引入了排序提升法机制,优化梯度估计过程,能够有效

缓解传统GBDT算法梯度偏差和预测偏移现象,从而在抑

制模型过拟合的同时,显著提升预测精度和泛化性能。

CatBoost核心思想在于通过构建有序的数据子集序列,打
破传统GBDT中梯度估计的依赖关系。

1.2 LSTM网络

  LSTM是一种主要用于序列数据处理的循环神经网

络,具有记忆效应,可处理任意长时序数据。相比 RNN,

LSTM引入一个新的内部状态ct专门进行线性循环信息传

递,LSTM网络的核心单元结构如图1所示,其通过动态门

控机制实现时间序列信息的选择性记忆与传递。

图1 LSTM单元结构

Fig.1 LSTM
 

unit
 

structure

具体而言,xt 代表当前时刻的输入向量,ct-1和ct分别

表示上一时刻与当前时刻的内部状态(即记忆单元),用于

存储长期历史信息;ht-1和ht则为对应时刻的隐藏层状态,
负责向后续层传递特征信息。在计算过程中,符号☉表示

逐元素乘积(Hadamard积),用于门控信号与状态向量的

交互;⊕
 

表示逐元素加法,用于状态更新。激活函数方面,
采用Sigmoid函数(输出范围[0,1])生成门控权重,图1中

为s,tanh则用于状态值的归一化处理。LSTM 通过3个

关键门控信号调控信息流:遗忘门zf动态决定上一时刻内

部状态ct-1中需丢弃的信息比例;输入门zi控制当前候选

状态z中需写入新状态ct的信息量;输出门zo则调节当前

内部状态ct中需输出至隐藏层ht的信息比例。最终,内部

状态与隐藏状态通过公式ct和ht协同更新。
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1.3 麻雀搜索算法

  麻雀搜索算法是由薛建凯[18]于2020年提出的一种新

型智能优化算法,其设计灵感源自麻雀群体在觅食过程中

规避捕食者的自然行为模式。该算法通过模拟麻雀种群中

不同角色个体的协作机制,构建了一种兼具局部搜索能力

与全局探索性能的优化框架。在SSA中,麻雀种群被划分

为发现者(Scout)、加入者(Joiner)和侦察者(Sentinel)3类

角色[19],3类个体通过动态交互与角色转换,在搜索空间中

协同完成寻优任务。这种基于生物群体智能的机制赋予了

SSA算法较高的收敛精度与较快的收敛速度,使其在复杂

优化问题中展现出良好的性能。

1)发现者负责在搜索空间探索潜在最优位置,其“能源

储备”(由适应度函数值衡量)较高,通过更新位置引导种群

全局搜索。

2)加入者依据发现者位置调整搜索路径,发现者与加

入者数量动态平衡且可角色互换,增强搜索多样性。

3)种群感知威胁时触发警报,发现者带领种群向安全

区域迁移,体现算法对动态环境的适应性。部分加入者因

适应度低,主动迁移至其他区域,促进算法在局部区域的深

度探索。

4)加入者因竞争资源发生位置冲突并更新位置,增强

局部搜索能力。

5)警报触发时,边缘麻雀向中心聚集,中心麻雀随机分

散,平衡全局探索与局部开发能力。

1.4 混沌映射算法

  在多数启发式智能算法中,种群初始位置常通过伪随

机数生成(服从[0,1]均匀分布),但此类伪随机数可能引发

变量在搜索空间分布不均,影响初始化质量[20]。为优化初

始种群分布,本文引入混沌映射生成随机数。混沌映射作

为一种具有初始条件敏感依赖性和长期不可预测性的数学

模型,可确保变量在解空间中均匀分布,从而拓宽算法搜索

范围、提升寻优精度与收敛速度。尽管Circle、Logistic及

Chebyshev映射等经典混沌映射被广泛应用,但易导致变

量分布不均及寻优效率低下[21]。相较之下,Tent混沌映射

因具有更优的遍历性和收敛速率,能够有效克服上述缺陷。
基于此,本文采用Tent混沌映射对算法初始种群生成过程

进行优化,以提升算法性能。

Tent
 

混沌映射的具体公式如式(1)所示,其中,α
 

∈(0,

1),根据实际情况选择适合的α值。
 

xn +1=f(xn)=

xn

α
,xn ∈ [0,α)

(1-xn)
(1-α)

,xn ∈ [α,1)

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

(1)

2 特征构造与特征挖掘

2.1 基于温度的风机状态特征构造

  本方法选择温度作为关键特征来表征风机的运行状

态。在正常工作状态下,风机系统内机械部件摩擦生热、电
机损耗产热与强制对流散热等过程达成热力学动态平衡,
使得设备温度维持在相对稳定的区间。当风机出现异常工

况时,诸如轴承磨损加剧、润滑失效或电机过载等故障诱

因,将显著提升系统产热功率,打破原有的热平衡机制,进
而导致温度呈现超阈值攀升现象。而在停机过程中,随着

机械运转动能与空气动力学作用的消失,设备产热机制停

止,温度遵循牛顿冷却定律逐渐衰减,并在与环境达成热平

衡后趋于稳定。
以中国宜昌某磷化工企业风机为例,异常工况、正常状

态及停机状态下的温度时序数据。如图2所示,该图截取

并呈现了风机在3种典型运行状态下的温度参数变化特

征。实验观测数据显示,当风机处于异常运行状态时,其温

度参数普遍高于
 

35℃,呈现出显著的过热特征;在突发停

电工况下,系统温度出现明显下降,整体低于
 

25℃,处于低

温区间;而当风机维持正常运行状态时,温度参数能够稳定

控制在
 

25℃~35℃
 

的合理区间内。上述结果表明,风机不

同运行状态与温度参数之间存在显著的对应关系,温度变

化可作为表征风机运行状态的重要指标。

图2 温度信号时序图

Fig.2 Timing
 

diagram
 

of
 

temperature
 

signal

2.2 基于SVFE和 MVFE的时序特征挖掘
 

  针对数据集中各特征均呈现时间序列特性的场景,特
征提取策略可分为两大类:其一为单变量特征提取(single

 

variable
 

feature
 

extraction,SVFE),该方法聚焦于单一时间

序列变量,通过时域统计、频域分析或非线性变换等手段,
从原始序列中衍生出新的特征,以揭示数据内部的潜在模

式与规 律;其 二 为 多 变 量 特 征 提 取 (multiple
 

variable
 

feature
 

extraction,MVFE),该方法则侧重于两个或多个时

间序列变量之间的交互作用,通过相关性分析、协整检验或

动态建模等方法,构建能够反映变量间协同效应的复合特

征,从而捕捉数据中的复杂依赖关系。
针对罗茨风机数据集,其原始数据不仅涵盖了各类传

感器采集的物理量时间序列(如温度、压力、振动等),还包

含了以“%Y-%m-%d%H:%M:%S”格式记录的时间

戳特征序列。为充分挖掘时间戳中蕴含的周期性、趋势性
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信息,并增强模型对风机温度与特征间复杂非线性关系的

建模能力,本研究采用SVFE方法对时间戳特征进行深度

解析。具体而言,通过正则表达式匹配与时间格式解析技

术,从时间戳字符串中提取出年(%Y)、月(%m)、日(%d)、
时(%H)、分(%M)、秒(%S)等基础时间特征,这些特征作

为新的时间序列变量,能够反映数据的时间维度变化。此

外,为进一步捕捉数据的季节性规律,本研究还基于月特征

构建了春、夏、秋、冬4个季节性时间序列特征,这些特征将

共同用于模型训练[22]。
另外,如图3所示,将时间戳与振动速度特征进行融合

构造新特征,采用 MVFE进行特征提取,利用直接运算的

方式构造复合特征,通过组合,扩充特征维度,加强特征隐

藏关联的学习能力,从而提高模型预测精度。

图3 特征提取示意图

Fig.3 Schematic
 

diagram
 

of
 

feature
 

extraction

2.3 基于熵权法和灰色关联的高关联特征筛选

  灰色关联分析作为一种多因素统计分析方法,其核心

思想是基于系统行为序列的几何形状相似性来量化因素间

的关联程度。该方法通过构建参考序列与比较序列的关联

度矩阵,能够有效揭示数据集中各因素之间的内在联系。
在风机运行状态监测领域,温度参数作为关键性能指

标,其变化受多源传感器特征(如振动、转速等)的协同影响

针对包含m×n维结构的数据集(n 为特征维度,m 为每个

特征的时间序列长度),灰色关联分析可系统化地量化风机

温度序列x={x(k)∣k=1,2,…,m}与各特征序列xi=
{xi(k)∣k=1,2,…,m}(i=1,2,…,n-1)之间的关联强

度,其核心计算步骤以灰色关联系数的求解为核心,通过度

量各特征序列与温度目标序列的几何相似性,揭示特征对

温度变化的贡献权重。式(2)是灰色关联系数值计算公式:

ci(k)=
a+ρb

|x(k)-xi(k)|+ρb
(2)

其中,i=1,2,3,…,n-1;ρ为分辨系数,取0.5;a,b

为对绝对差值,具体计算公式如式(3)~(4)所示。

a=min
i
min

k
[|x(k)-xi(k)|]  (3)

b=max
i
max

k
[|x(k)-xi(k)|]  (4)

ri 为灰色关联度:

ri =
1
m∑

m

k=1
ci(k) (5)

在基于灰色关联分析的评估体系中,式(5)采用对关联

系数取平均值的方式来确定关联度大小。然而,该方式存

在局限性,容易将各个特征的个性特征掩盖,无法充分体现

除风机温度特征之外的其他特征相对于风机温度特征的重

要程度差异。由此所得的关联度,难以满足对特征重要性

进行精准评估的需求[23]。
信息熵作为一种重要的信息度量指标,能够有效地描

述各事件发生的不确定性程度。在特征权重确定问题中,
通过信息熵计算得到的熵值大小与特征所蕴含的信息量呈

正相关关系。基于此原理,采用信息熵加权方法对特征进

行处理,能充分利用实际数据中所包含的丰富信息来确定

各特征的权重,避免了主观因素对评估结果的干扰,使得权

重分配更加符合数据本身的内在规律。信息熵大小的计算

过程具体如下:
根据式(6)计算熵值Si:

Si= -[ln(m)]-1∑
m

k-1
pi(k)ln[pi(k)] (6)

其中,pi(k)
 

为特征i中第k 个归一化值占该特征所

有归一化值之和的比例,如式(7)所示。

pi(k)=
x'i(k)

∑
m

k=1
x'i(k)

(7)

将所求熵值
 

Si作为权重代入式(4)中,得出改进后的

灰色关联度大小ri
􀮨 ,如式(8)所示。

ri
􀮨 =

1
m∑

m

k=1
Sici(k) (8)

3 基于CSSA-CatBoost-LSTM 模型的风机状态预

测方法

3.1 CSSA-CatBoost-LSTM模型

  如图4所示,呈现了CSSA-CatBoost-LSTM 模型结构

化框架。具体来看,输入的特征是历数据清洗、深度特征挖

掘以及筛选后获取的高关联度时序变量,在子模型层,

CatBoost模块通过构建多棵决策树,对输入特征实施非线

性映射,进而输出预测分量;而LSTM 模块则依托其特有

的长短期记忆机制,敏锐捕获特征序列的时序依赖关系,输
出另一路预测分量。

CSSA算法进行参数寻优:一方面,针对CatBoost和

LSTM模型,对学习率、神经元数量、学习次数等核心参数

进行优化;另一方面,针对组合过程,优化各子模型预测分

量的权重,从而实现最优加权融合。最终,经过CSSA优化
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图4 CSSA-CatBoost-LSTM模型方法框图

Fig.4 CSSA-CatBoost-LSTM
 

model
 

method
 

flowchart

的加权组合模块,对CatBoost与LSTM的预测分量进行融

合,输出风机状态的预测结果。

3.2 基于CSSA-CatBoost-LSTM模型的预测流程

  本文提出一种基于CSSA-LSTM-CatBoost的组合预测

模型用于磷化工罗茨风机预测。LSTM网络凭借其独特的

门控机制和记忆单元,能够有效捕捉振动信号、温度变化等

时序数据的长期依赖关系和非线性动态特征;而CatBoost算

法则通过有序提升策略和对称决策树结构,挖掘时间、温度、
振动等多维特征间的复杂交互作用和隐含模式。两种方法

的结合形成了时空特征的全方位捕捉能力,但简单的等权融

合无法充分发挥其协同效应。为此,本研究引入改进的麻雀

搜索算法进行LSTM超参数优化和最终权重优化。该算法

通过立方映射混沌初始化确保种群多样性,采用自适应搜索

策略平衡开发与探索过程,并设计复合目标函数综合考量预

测误差的多个维度。预测流程图如图5所示。

1)多源数据采集与结构化:从化工厂数据库提取风机

振动、电气及温度数据,通过Python存储,确保数据完整性

与可访问性。

2)数据清洗与标准化:对连续型变量采用双重窗口策

略进行缺失值插补,包括滑动短窗口(5
 

个时间步,对应5
 

h)均值插补与周期性长窗口(24个时间步,对应24
 

h)均值

插补;对类别型变量则采用众数进行缺失值填充;基于
 

3σ
 

原则识别连续型变量中的异常观测值,对检测到的异常值

采用局部中位数(窗口大小为
 

7
 

个时间步)进行替换;最后

应用
 

Min-Max
 

缩放方法,将所有连续型特征线性映射至

[0,1]区间,实现特征量纲的统一化处理。该流程兼顾了时

序数据的局部波动性与周期性特征,通过统计性方法确保

数据处理的科学性与一致性,为后续建模分析奠定标准化

的数据基础。

3)改进灰色关联分析(IGRA):结合信息熵与互信息计

算特征权重,按式(7)计算温度与振动特征的加权灰色关联

度,突出高贡献特征。

4)特征选择与时序特征构造:选取关联度排名前10的

特征。后提取时间戳的年、月、日等维度,并构造时间戳-特
征联合特征,最后取两组特征中关联度前6的特征作为模

型输入。

5)最优加权组合模型构建:采用最优加权组合构建。

6)预测结果输出并可视化。

图5 预测流程

Fig.5 Prediction
 

process

4 案例分析

  算例数据选取的是某磷化工企业一罗茨风机2023年

1月1日00:00:00~2024年1月1日00:00:00的一年的

实测数据,主要包含罗茨风机前端的振动数据和温度数据,
时间分辨率为1

 

h,共8
 

640组数据,将数据集按照8∶2划

分为训练集和测试集进行预测。并且选用温度低谷、高峰、
平稳上升及下降4种情况进行预测效果展示。利用3.3节

建立的磷化工风机预测模型进行仿真分析,验证所提方法

的有效性和准确性。

4.1 数据清洗

  表1给出了所用数据集的相关特征信息,包括特征名

称、英文缩写以及单位。

表1 风机原始特征

Table
 

1 Original
 

characteristics
 

of
 

wind
 

turbine
特征 单位 特征 单位

垂直振动速度 mm/s 电池电压 V
轴向振动速度 mm/s 震动加速度 g's
水平振动速度 mm/s 润滑指数 %

考虑到风机工作异常、定期维护以及数据采集装置故

障带来的数据缺失或异常,使得原始数据出现缺失或异常
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等不良数据,为避免不良数据对模型训练学习过程带来不

利影响,对原始数据集进行缺失值检测,随后采用前后数据

求平均值的方式对缺失值进行填充,并且剔除异常值。
鉴于风机运行过程中可能因设备故障、定期停机维护

以及数据采集装置的传感器漂移或通信中断等因素,导致

原始数据集中存在缺失值或异常值,此类不良数据会显著

干扰模型训练的收敛性与泛化能力。为此,首先对原始数

据集进行缺失值检测,针对连续型数据采用基于滑动窗口

(窗口大小设为5)的均值插补策略,利用前后相邻时刻的

有效数据均值填充缺失值,以保留局部时序特征;同时,借
助2024年1月~4月期间所采集的时间序列数据,运用3σ
准则对数据中的异常值进行精准识别。针对识别出的超出

阈值范围的数据点,直接予以剔除处理。

4.2 特征挖掘和筛选

  首先,由式(2)~(8)对表1中所有候选特征进行灰色

关联分析,量化各特征与目标温度特征间的非线性关联程

度,并按灰色关联度降序排列,随后,基于信息熵理论计算

各特征的熵值,以评估其信息冗余度,其中熵值越小表明特

征蕴含的信息量越集中;计算结果及排序如表2所示,排序

结果与改进前基本一致,其中垂直振动速度与振动加速度

互换了排序位置,究其原因,是因为垂直振动速度与振动加

速度相比,特征熵值较小,即蕴含的信息量比更集中;尽管

特征VV与 HV的信息熵值在候选特征集中排名靠前,表
明其数据分布的离散程度较低、冗余信息较少,但二者在改

进前后的灰色关联度及加权灰色关联度排序中均位列末

端,表明其与目标温度特征的非线性关联强度较弱,信息贡

献度不足以支撑模型预测性能。因此,将VV与 HV从预

测模型的输入特征集中剔除,以避免引入冗余噪声并优化

模型复杂度。

表2 风机原始特征改进前、后关联度大小计算结果

Table
 

2 Calculation
 

results
 

of
 

the
 

correlation
 

degree
 

before
 

and
 

after
 

improving
 

the
 

original
 

features
 

of
 

the
 

wind
 

turbine

特征
加权前

大小 排序
熵值

加权后

大小 排序

垂直振动速度(VV) 0.538
 

7 3 5.261
 

5 0.532
 

9 4
轴向振动速度(AV) 0.543

 

3 2 5.554
 

8 0.537
 

1 2
水平振动速度(HV) 0.537

 

5 5 5.115
 

3 0.531
 

9 5
电池电压(BO) 0.534

 

2 6 2.229
 

2 0.531
 

7 6
振动加速度(VA) 0.538

 

4 4 4.641
 

5 0.533
 

3 3
润滑严重性指数(LS)0.592

 

1 1 5.760
 

0 0.585
 

1 1

由于特征选择较少,选择通过时间戳与特征相互交互

扩展特征集,最终通过将原始特征集与新构建的特征集相

互比较,选出前10名做出表3,通过表
 

3
 

和上述分析,特征

BO-year、LS-hour、LS-day、LS-month、VA-day、VA-hour
灰色度大小均在0.72以上,但BO-year的熵值过低,是由

于其变化模式单一,不利于进行模型预测的训练,所以添加

特征AV-day作为第6个特征。

表3 时间戳-风机特征改进前、后关联度大小计算结果

Table
 

3 Calculation
 

results
 

of
 

correlation
 

degree
 

before
 

and
 

after
 

timestamp
 

fan
 

feature
 

improvement

特征
加权前

大小 排序
熵值

加权后

大小 排序

BO-year 0.983
 

9 1 2.229
 

2 0.979
 

4 1
LS-hour 0.788

 

0 2 7.510
 

6 0.775
 

9 2
LS-day 0.769

 

3 3 7.764
 

0 0.757
 

0 3
LS-month 0.757

 

7 4 7.150
 

5 0.744
 

6 5
VA-day 0.755

 

9 5 7.297
 

5 0.746
 

7 4
VA-hour 0.752

 

3 6 7.030
 

2 0.741
 

5 6
AV-day 0.739

 

7 7 7.994
 

1 0.727
 

6 7
AV-hour 0.727

 

9 8 7.715
 

6 0.716
 

4 8
VV-day 0.723

 

1 9 7.847
 

1 0.711
 

5 9
VV-hour 0.717

 

9 10 7.566
 

0 0.706
 

8 10

4.3 模型测试

  为系统评估新构造时序特征对模型预测性能的贡献,
本研究分别构建特征提取前后的LSTM与CatBoost模型,
并对比其预测效果。具体而言,针对原始特征集与融合新

时序特征的特征集,分别训练LSTM 与CatBoost模型,将
特征 提 取 后 的 模 型 命 名 为 FE-LSTM(feature-extracted

 

LSTM)与 FE-CatBoost,并通过均方误差(mean
 

squared
 

error,MSE)、平均绝对误差(mean
 

absolute
 

error,MAE)等
指标量化特征提取对模型预测精度的提升作用如式(9)~
(11)所示。

EMAE =
1
N∑

N

i=1
|x(i)-x*(i)| (9)

EMSE =
1
N∑

N

i=1

(x(i)-x*(i))2 (10)

R2=1-
∑

m

k=1

[y(k)-Y(k)]2

∑
m

k=1
y(k)-Y

-(k)  2

(11)

其中,y(k)为预测值;Y(k)为真实值;Y-(k)为真实

值的平均值;m 为数据样本数。
此外,为验证组合模型LSTM-CatBoost在特征增强后

的性能优势,将特征提取处理后的组合模型 FE-LSTM-
CatBoost与单一模型FE-LSTM、FE-CatBoost的预测结果

进行对比,分析多模型融合策略对复杂时序依赖关系的建

模能力。
通过时间戳特征与特征交互得到新的输入特征,并利

用CSSA对模型超参数进行优化,将处理后的特征数据输

入到FE-LSTM-CatBoost-CSSA组合模型中进行训练,并
与单一模型以及未优化SSA的组合模型的预测效果进行

对比。如 表 4 所 示,在 测 试 集 中,FE-CSSA-CatBoost-
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LSTM模、型比其他4种模型的RMSE和 MAE均有较大

程度的下降。而R2 相比与其他4种模型,精准度也更高。
在训练时间方面,虽然FE-CatBoost

 

模型训练耗FE-CSSA-
LSTM-CatBoost模型46

 

min的训练时间处于一个相对合

理的范围,既不会因为训练时间过长而影响模型的快速部

署和应用,又能够保证模型具有较高的预测精度和拟合

优度。
将测 试 集 数 据 分 别 输 入 本 文 提 出 的 FE-CSSA-

CatBoost-LSTM 模 型 与 BP-SVM、GBDT、LSTM 和

LSTM-Transformer相对比,包括训练集与验证集大小也

控制在相同范围内。预测结果如表4和图6所示。FE-
CSSA-CatBoost-LSTM模型表现出显著优势,其 MAE为

7.05、MSE为11.83、R2 达99.49%。其在训练时间相对合

理的情况下,实现了性能的显著优化,在训练效率和模型性

能之间提供了平衡,训练时间短的模型往往在预测精度和

拟合优度上有所欠缺。

表4 五种不同模型预测结果对比

Table
 

4 Comparison
 

of
 

prediction
 

results
 

of
 

five
 

different
 

models

模型
EMSE

/%
EMAE

/%
R2

/%
训练时间
/min

BP-SVM 44.24 34.21 88.72 15

GBDT 39.32 30.31 91.08 12

LSTM 22.04 48.58 97.15 43

LSTM-Transformer 21.83 17.09 97.32 52

FE-CSSA-LSTM-CatBoost 11.83 7.05 99.49 46

图6 五种模型预测值与实际值的对比

Fig.6 Comparison
 

between
 

actual
 

values
 

and
 

predicted
 

values
 

of
 

five
 

models

  为了展示预测值与实际值之间的差异,随时间或观测

序号的变化情况。图7中分别呈现了5种模型的残差分

布。GBDT模型的残差在零值附近随机分布,虽然整体上

没有明显的趋势,但残差的分布范围较广,表明在某些时间

步长上,预测误差较大。BP-SVM模型相较于GBDT,残差

的波动范围更大,且在某些区域残差较为密集,表明模型在

某些特定时间步长上的预测能力较弱。LSTM模型残差分

布相对较为均匀,围绕零值上下波动,显示出LSTM 模型

在捕捉时间序列特征方面具有一定优势,但仍有部分时间

步长上存在较大误差。LSTM-Transformer模型的残差在

零值附近呈现出较为紧密的分布,波动范围相对较小,表明

该模型在整合LSTM 和Transformer的优点后,能够更有

效地捕捉时间序列中的复杂模式,预测精度有所提高。本

文使用的模型,中位值0.07为最小,残差分布最为集中,且
围绕零值紧密波动,具有出色的预测性能和稳定性,能够有

效减少预测误差。

图7 五种不同模型的残差对比图

Fig.7 Residual
 

comparison
 

plot
 

for
 

five
 

different
 

model
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  如图8所示,展示了5种预测模型在风机温度预测任

务中的性能表现。从图6中选择上升拐点A、下降拐点B、
波峰C和波谷D四个典型区域展开详细分析。图8(a)~
(d)分别为对应区域的局部放大图。从图8中可清晰观察

到:在温度变化平稳阶段,FE-CSSA-LSTM-CatBoost模型

的预测误差较GBDT降低约29%,较BP-SVM降低33%;
在温度突变阶段,改进模型的误差峰值仍低于传统模型

20%~30%。

图8 五种模型预测值与实际值的局部对比图

Fig.8 Local
 

comparison
 

of
 

predicted
 

and
 

measured
 

values
 

among
 

five
 

models

  定量评估结果也印证了这一结论:在4组测试集上,

CSSA-LSTM-CatBoost模型的平均 RMSE较 GBDT降低

43.1%,较BP-SVM降低39.7%;R2 值从GBDT的0.75~
0.80和BP-SVM的0.72~0.78提升至0.91~0.94,充分

证明了改进方法在复杂工业场景中的有效性。
如表5所示,消融实验数据得出基于标准麻雀搜索算

法(SSA)优化的LSTM模型LSTM-SSA虽通过全局搜索

改善了LSTM的时序建模能力,但受限于SSA算法易陷

入局部最优的缺陷,仍存在优化空间。该模型对风机温度

序列中非平稳工况的适应能力较弱,例如在功率快速波动

阶段,预测值与真实值的滞后偏差导致误差指标偏高。
在LSTM-SSA基础上引入CatBoost梯度提升模块从

原始温度序列中提取了具有高区分度的时序特征,并将其

与LSTM-CatBoost模型结合为TFE-LSTM-CatBoost。实

验数据显示,该模型EMAE 降至1.095,R2 提升至98.83%,
验证了TFE模块在特征维度上的降维增效能力。具体而

言,熵值法通过量化特征信息量,动态调整灰色关联分析

的权重分配,使得模型更聚焦于与温度变化强相关的特征

子集,从而增强了特征与目标变量的非线性映射能力。

表5 单一模型和组合模型的预测误差结果

Table
 

5 Prediction
 

error
 

results
 

of
 

single
 

model
 

and
 

combined
 

model

模型
EMSE

/%
EMAE

/%
R2

/%
训练时间
/min

FE-LSTM 22.04 14.86 97.36 43
FE-CatBoost 19.17 27.31 97.77 20
LSTM-CatBoost 19.94 12.18 98.58 65
FE-LSTM-CatBoost 18.04 10.95 98.83 58

FE-CSSA-LSTM-CatBoost 11.83 7.05 99.49 46

通过熵值法改进的灰色关联分析(TFE)模型LSTM-
CatBoost后,尽管EMSE 略有上升(199.35),但EMAE 显著降

低至1.218
 

0,且 R2 提 升 至98.58%。这 一 现 象 表 明,

CatBoost通过迭代拟合LSTM预测残差,有效缓解了单一
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LSTM模型对极端值的敏感性。然而,由于未针对时序特

征进行针对性优化,模型在处理高维动态特征时仍存在信

息冗余,导致RMSE指标未进一步改善。
最终提出的TFE-LSTM-CatBoost-CSSA模型通过混

沌映射初始化SSA种群,显著提升了算法的全局搜索能

力。相较于基线LSTM-SSA模型,其EMSE 降低39.0%,

EMAE降低52.6%,R2 提升2.13%。通过Logistic混沌映

射生成初始种群,打破了标准SSA算法的均匀分布假设,
增强了种群多样性,避免了算法早熟收敛;CSSA算法同时

调优LSTM的隐藏层神经元数量、学习率与CatBoost的

树深度、学习率等超参数,实现了时序建模与梯度提升模

块的参数联动优化。

5 结  论

  本文针对风机健康状态预测中特征提取不充分及单

一模型预测精度受限的问题,提出了一种基于混沌优化策

略的混合深度学习架构CSSA-CatBoost-LSTM 模型。首

先,通过对风机传感器特征与时间戳特征进行多维度解析

与交互融合,构建了更具表征能力的复合特征集,提升了

特征维度与信息丰富度。其次,引入熵权修正的灰色关联

分析方法,动态评估特征重要性,实现了特征降维与关键

特 征 提 取,进 一 步 优 化 了 模 型 输 入。随 后,设 计 了

CatBoost梯度提升树与长短期记忆网络的混合架构,发挥

了CatBoost在特征交互挖掘与LSTM 在时序数据处理方

面的优势。为优化LSTM模型超参数,本文引入了混沌映

射改进的麻雀搜索算法(CSSA),提升了算法的全局搜索

能力与收敛速度。实验结果表明,无论是在风机正常运行

状态或者异常运行状态,CSSA-CatBoost-LSTM 组合模型

均能保持较高的预测精度。
本研究为风机故障预警提供了兼具理论创新性与工

程实用性的解决方案,其技术路径可推广至其他旋转机械

状态监测领域。受限于单一企业数据集,模型在多工况跨

领域应用时的适应性仍需验证,未来将结合迁移学习技术

拓展应用场景。
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