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摘 要:随着分布式能源的快速发展,准确预测分布式能源的出力成为了配电网可靠性评估的重要组成部分,为提高

配电网可靠性评估准确性,本文提出了一种融合VMD-QRCNN-BiLSTM预测与DFT-MP-DBN建模的主动配电网可

靠性评估方法。首先通过变分模态分解将原始风光荷时间序列分解为固有模态分量,并采用分位数回归卷积神经网

络对风光出力以及负荷进行特征提取;而后使用双向长短期记忆相结合建模各变量的时间序列特征,并生成预测值;
其次预测值作为动态故障树的输入,并采用连续时间马尔可夫链,并获取状态转移率矩阵;最后采用动态贝叶斯网络

刻画状态的时序依赖,并加入观测或控制变量。以IEEE
 

RBTS
 

Bus
 

2系统为例,实验结果表明,所提方法的SAIFI、
SAIDI、AENS和ASAI指标分别为0.231次/户/年、3.496小时/户/年、17.465

 

kWh/年和99.943%,显著优于传统方

法,验证了其在提高配电网可靠性评估精度和效率方面的有效性。
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Abstract:
 

With
 

the
 

rapid
 

development
 

of
 

distributed
 

energy
 

resources,
 

accurate
 

prediction
 

of
 

their
 

output
 

has
 

become
 

a
 

critical
 

component
 

in
 

the
 

reliability
 

assessment
 

of
 

distribution
 

networks.
 

To
 

enhance
 

the
 

accuracy
 

of
 

such
 

assessments,
 

this
 

paper
 

proposes
 

a
 

reliability
 

evaluation
 

method
 

for
 

active
 

distribution
 

networks
 

that
 

integrates
 

VMD-QRCNN-
BiLSTM-based

 

forecasting
 

with
 

DFT-MP-DBN
 

modeling.
 

First,
 

the
 

original
 

time
 

series
 

data
 

of
 

wind
 

power,
 

solar
 

power,
 

and
 

load
 

are
 

decomposed
 

into
 

intrinsic
 

mode
 

components
 

using
 

Variational
 

Mode
 

Decomposition
 

(VMD).
 

Then,
 

a
 

Quantile
 

Regression
 

Convolutional
 

Neural
 

Network
 

(QRCNN)
 

is
 

employed
 

to
 

extract
 

the
 

temporal
 

features,
 

and
 

a
 

Bidirectional
 

Long
 

Short-Term
 

Memory
 

(BiLSTM)
 

network
 

is
 

used
 

to
 

model
 

each
 

variable
 

and
 

generate
 

accurate
 

forecasts.
 

These
 

predicted
 

values
 

are
 

then
 

input
 

into
 

a
 

Dynamic
 

Fault
 

Tree
 

(DFT),
 

where
 

a
 

Continuous-Time
 

Markov
 

Process
 

(MP)
 

is
 

used
 

to
 

compute
 

the
 

state
 

transition
 

rate
 

matrix.
 

Finally,
 

a
 

Dynamic
 

Bayesian
 

Network
 

(DBN)
 

is
 

applied
 

to
 

capture
 

the
 

temporal
 

dependencies
 

among
 

system
 

states
 

and
 

incorporate
 

observed
 

or
 

control
 

variables.
 

Case
 

studies
 

based
 

on
 

the
 

IEEE
 

RBTS
 

Bus
 

2
 

system
 

show
 

that
 

the
 

proposed
 

method
 

achieves
 

superior
 

reliability
 

performance,
 

with
 

SAIFI,
 

SAIDI,
 

AENS,
 

and
 

ASAI
 

values
 

of
 

0.231
 

times/customer/year,
 

3.496
 

hours/customer/

year,
 

17.465
 

kWh/year,
 

and
 

99.943%,
 

respectively—significantly
 

outperforming
 

traditional
 

approaches.
 

These
 

results
 

validate
 

the
 

effectiveness
 

and
 

advantages
 

of
 

the
 

proposed
 

method
 

in
 

improving
 

the
 

precision
 

and
 

efficiency
 

of
 

distribution
 

network
 

reliability
 

assessments.
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0 引  言

  电力系统包括发电、输电和配电网。电力供应公用事

业已确定可靠性以改善客户服务。配电系统的主要贡献是

电能从生成单元以指定的电压极限向实用程序传输,并将

整个网络保持为可靠[1]。在电力系统中,配电网承担着将
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电能从输电网络传输到不同电压等级用户的重要任务,其
可靠性将直接影响用户的用电体验[2]。因此,研究考虑源

荷双边不确定性的配电网可靠性评估策略对新型配电系统

的发展意义重大[3]。
鉴于配电网可靠性评估的必要性,国内外对于其的研

究已有不少[4]。可靠性评估综述主要集中于认识到分配网

格中干扰的主要原因,以及有效控制需求增强。评估方法

被归类为两个因素:分析和仿真。分析方法在很长一段时

间内是技术先进的,可用于实际目的[5]。文献[6]考虑到随

机变量之间的相关性问题,提出了一种考虑分布式发电与

负荷之间相关性的配电网可靠性评估方法。文献[7]利用

多场景技术生成典型的孤岛内生负荷场景,并提出了考虑

孤岛持续时间的孤岛形成概率计算方法。文献[8]建立了

风能-太阳能-电池储能元件的时间模型和状态转换模型。
基于这些模型,对系统中的非电力元件进行了顺序采样,而
对风 能-太 阳 能-电 池 储 能 元 件 进 行 了 非 顺 序 采 样。
文献[9]提出了一种评估分布式发电配电系统可靠性的新

方法,该方法采用顺序蒙特卡洛法,考虑了简化的等效网

络。上述参考文献仅通过序列蒙特卡洛法评估了源-荷时

间序列变化对配电网可靠性的影响,未考虑序列蒙特卡洛

法精度较低的问题,也忽略了根据一天内源-荷特性评估特

殊时刻配电网可靠性的问题。
目前已提出概率预测方法,用于预测风光电站输出功

率的概率密度函数、置信区间或量化值。在文献[10]中,一
种基于高阶马尔科夫链的概率预测方法被用于预测未来

15分钟的风光发电量的概率密度函数。在文献[11]中,开
发了 一 种 结 合 极 端 机 器 学 习 和 分 位 数 回 归 (quantile

 

regression,
 

QR)的统计方法来预测风光功率的置信区间。
在文献[12]中,采用了加权高斯过程回归方法来预测风光

功率的置信区间。在文献[13]中,提出了一种基于 QR的

卷积 神 经 网 络 (quantile
 

regression
 

based
 

convolutional
 

neural
 

network
 

,QRCNN)方法,用于预测提前30
 

min的风

光发电量的量化值。
近年来,随着主动配电网中分布式能源的大规模接入,

源荷不确定性问题愈发凸显,可靠性评估方法也逐渐从静

态模型向动态、概率、智能化方法演进。国外如IEEE、

CIRED等机构推动了多状态元件建模、动态失效过程建模

和基于人工智能的评估方法研究;国内研究则主要集中于

多源异构数据驱动的评估模型构建与多阶段恢复策略建

模。然而,现有研究普遍存在以下几点不足:

1)忽视预测模型与评估模型的耦合性。大多评估方法

直接使用历史数据或典型日负荷曲线,未能体现源荷预测

对可靠性指标的动态影响;

2)动态过程建模精度有限。多数方法仅使用静态故障

树或传统马尔可夫过程,难以刻画故障发展演化中的状态

依赖性与条件触发逻辑;

3)缺乏高时效性的多源融合模型。当前较少方法能将

非平稳时间序列预测、状态演化建模和不确定性推理有效

整合,限制了主动配电网高频扰动下的实时评估能力。
综上所述,本文融合了基于变分模态分解、分位数回

归、卷积神经网络结合双向长短时记忆(variational
 

modal
 

decomposition,
 

quantile
 

regression,
 

convolutional
 

neural
 

network
 

com-bined
 

with
 

bidirectional
 

long
 

and
 

short
 

term
 

memory
 

,VMD-QRCNN-BiLSTM)预测模型和动态故障

树、马尔可夫过程与动态贝叶斯网络结合(dynamic
 

fault
 

trees
 

and
 

markov
 

processes
 

combined
 

with
 

dynamic
 

Bayesian
 

networks,DFT-MP-DBN)建模框架,实现对源荷

演化过程的准确刻画与对系统动态可靠性的多层建模。该

方法在解决非平稳性、多阶段失效演化以及时序依赖关系

建模方面具备显著优势,有效填补了当前研究中的空白,具
有较强的实际推广意义和理论价值。

1 源荷预测

1.1 VMD分解

  本文首先对原始风光出力以及负荷数据进行变分模态

分解[14](variational
 

modal
 

decomposition,VMD)分 解。

VMD算法能够将非平稳时序信号分解为若干个具有特定

频率特征的本征模态函数,从而实现对原始信号的降噪与

模式提取,为后续特征提取与建模提供稳定的数据基础。

VMD是一种自适应的信号分解方法,用于将复杂的

输入信号分解为若干个固有模态函数(intrinsic
 

modal
 

function,IMF)。与传统的经验模态分解相比,VMD通过

引入变分原理与优化算法,在数学上严格定义了每一个模

态的带宽,并实现自适应分解。
给定输入信号f(t),VMD的目标是将其分解为n 个

具有有限带宽的IMF,每一个IMF对应于一个特定的中心

频率ωk,公式如下:

f(t)=∑
n

k=1
uk(t) (1)

式中:n 表 示 分 解 得 到 的 模 态 函 数 数 量;uk 表 示 第k
个IMF。

为了确保每一个IMF是窄带信号,VMD通过最小化

其带宽的总和来达到分解的目的。优化目标函数定义为:

min
{uk},{ωk}

∑
n

k=1
∂t δ(t)+jπt  *uk(t)􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁

e
-jωkt2

2  (2)

式中:δ(t)表示冲激函数,用于构建希尔伯特变换的解析

信号形式;j是虚数单位;∂t 表示对时间的微分。
引入拉格朗日乘子λ(t)并使用变分原理构建优化问

题的拉格朗日函数:

= α∑
n

k=1
‖∂t δ(t)+jπt  *uk(t)􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁

e
-jωkt‖2

2 +

‖f(t)-∑
n

k=1
uk(t)‖2

2 (3)

通过交替方向乘子法求解,最终得到每一个IMF表示

如下:
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un+1
k (t)=IFT

f̂(ω)-∑
i≠k

ûi(ω)+λ̂(ω)

1+2α(ω-ωn
k)2  (4)

式中:IFT表示反傅里叶变换,将频域的结果转换回时域;

f̂(ω)表示输入信号的频谱;ûi(ω)表示除了第k 个IMF

之外的所有其他IMF的频谱;λ̂(ω)表示拉格朗日乘子的

频谱;α表示调节带宽的参数;ωn
k 表示当前迭代下第k 个

IMF的中心频率。
每一个IMF对应的中心频率表示如下:

ωn+1
k =
∫

∞

0
ω|ûk(ω)|2dω

∫
∞

0
|ûk(ω)|2dω

(5)

在风光出力以及负荷预测任务中,VMD的引入可以

显著提高信号分解的准确性与稳定性,为后续的特征提取

与建模提供更好的输入。

1.2 CNN特征提取

  卷 积 神 经 网 络[15](convolutional
 

neural
 

networks,
 

CNN)作为深度学习中的一种重要结构,因其在图像处理

与特征提取任务中表现出的优异性能而得到广泛应用。在

本研究中,将CNN用于从分解后的IMF中提取特征,从而

构建多尺度特征的表示向量。

CNN的结构主要由卷积层、池化层与全连接层构成,其
中卷积层用于提取局部特征,池化层用于降维与抗干扰,全连

接层用于最终的特征映射与输出,CNN结构示意如图1所示。

图1 CNN结构示意

Fig.1 Schematic
 

of
 

CNN
 

structure

  1)卷积层

在所提出的模型中,卷积层的设计是通过卷积运算从

NWP和历史风光出力以及负荷数据中提取隐藏特征。由

于输入数据的维度较高,因此必须训练相对较多的网络参

数。在深度学习过程中,CNN权重共享程序通过共享卷积

核参数来解决这一问题。在这里,每个卷积核都有一个感

受野,用于从上一层提取局部神经元。然而,不同层之间

的神经元是局部连接的,如图1所示。
卷积层的特征图是通过计算上一层的特征图与卷积

核之间的点积得到的,然后通过激活函数进行非线性化处

理,如式(6)所示。

Cl
j =f ∑

i∈Ni

Il-1
i 􀱋wl

i,j +bl
j  (6)

式中:f(·)为激活函数,通常使用sigmoid函数和ReLU
函数。与sigmoid函数相比,ReLU函数具有更高的收敛

率,本文采用
 

ReLU
 

函数作为激活函数;Il-1
i 表示第(l-1)

层的特征图i;􀱋 是卷积运算;Ni 表示特征图的输入集;

wl
i,j 表示第(l-1)层特征图i相对于第l层特征图j的权

重;bl
j 表示第(l-1)层特征图i相对于第l层特征图j的

权重;Cl
j 表示第l层特征图j。

2)池化层

池化层位于卷积层之后。它用于进一步提取非线性

特征和降低输入数据的维度。池化层首先将输入特征图

划分为一组子区域,然后通过池化函数将这些子区域转换

为更小的特征图,并生成其平均值或最大值作为输出。因

此,池化层可以有效减少CNN结构参数的数量和计算复

杂度。池化层的特征图计算公式为:

Pl
j =f(βljdown(Cl-1

i )+bl
j) (7)

式中:Cl-1
i 表示第(l-1)层特征图i;βlj 表示第l层特征图

j的权重系数;down(·)表示池化函数;Pl
j 表示第l层特

征图j。
本文采用最大池化函数,在池化层结构之后,输入数

据被扁平化为一维向量,然后输入全连接层。

3)全连接层

在池化层结构后面添加了几个全连接层。全连接层

中的每个神经元都与前一层的所有神经元相连。全连接

层神经元的计算公式为:

Fl
j =f ∑

i∈I-1
wl

i,jNl-1
i +bl

j  (8)

式中:Fl
j 表示第l层特征图j。

在本研究中,为了增强特征提取的精度与鲁棒性,引
入了QRCNN,结合CNN的特征提取能力与分位数回归

的鲁棒性,实现多尺度特征的高效提取与建模。与传统的

CNN模型不同,QRCNN在输出层引入了分位数回归损失

函数,以实现不同置信水平下的概率预测。
引入QR的主要目的是为了捕捉数据中潜在的不确定
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性信息。分位数回归通过最小化PinballLoss函数,使得模

型能够在不同置信水平下输出预测结果,PinballLoss函数

表达如下:

Lτ(y,ŷ)=
τ×(y-ŷ), y≥ŷ

(1-τ)×(ŷ-y), y<ŷ (9)

式中:y 表示真实值;ŷ 表示预测值;τ表示目标分位数。

在完成VMD分解后,继续将每个分量序列与相应时

刻的气象数据(如光照强度、温度、风速等)皆作为模型输

入,以便充分利用环境因素对风光出力以及负荷的影响规

律。随后,引入CNN作为初级特征提取模块。通过多层

卷积层与池化层的操作,CNN能够自动提取输入数据中

的局部时序变化模式与潜在非线性特征,从而将原始多维

时序数据编码为具有代表性的低维特征向量,增强模型对

复杂动态特性的建模能力。

1.3 BiLSTM时序建模

  双向长短期记忆网络[16](bidirectional
 

long
 

short
 

term
 

memory,
 

BiLSTM)是LSTM网络的扩展,通过同时考虑前

向和后向传播的特征信息,提高对时序数据的捕捉能力。
如图2所示为BiLSTM存储单元结构,BiLSTM 网络

包含两个相反方向的LSTM网络:其中之一的前向网络表

示从时间序列的起点到终点依次处理数据,捕捉过去的依

赖信息;另外一个的后向网络表示从时间序列的终点到起

点反向处理数据,捕捉未来的依赖信息。

图2 BiLSTM存储单元结构

Fig.2 BiLSTM
 

memory
 

cell
 

structure

  在风光出力以及负荷预测中,BiLSTM 能够更好地捕

捉时间序列的双向依赖性,避免传统LSTM网络中信息丢

失或衰减的问题。
给定输入序列X={x1,x2,…,

 

xn},BiLSTM 的输出

表达如下:

ht= [
 

ht
→,ht
←] (10)

式中:ht
→表示前向隐藏状态;ht

←表示后向隐藏状态。

CNN模块输出的特征向量随后被送入BiLSTM 中进

行深 层 次 时 序 建 模。BiLSTM 通 过 前 向 与 后 向 两 个

LSTM子网络,能够同时捕捉历史与未来时间步之间的依

赖关系,相较于传统单向LSTM,其在处理具有长期依赖

性和复杂动态行为的时间序列任务中表现更为优越。在

本研究中,BiLSTM主要用于构建风光出力以及负荷随时

间演化的非线性映射关系,实现对未来功率输出值的高精

度点预测。

2 可靠性评估建模

2.1 动态故障树

  动态故障树[17](dynamic
 

fault
 

tree,DFT)除了使用静

态故障树的逻辑门,该方法还增加了4个动态逻辑门:优
先级-AND(priority-AND,

 

PAND)门、功能依赖(function
 

dependency,
 

FDEP)门、序 列 执 行(sequence
 

enforcing,
 

SQE)门和备用门。动态逻辑门逐一介绍如下:

1)PAND门。PAND的输入事件是逻辑门的基本事

件或输出事件。PAND的失效机制是,如果输入事件按从

左到右的顺序发生,则输出事件发生。假设一个PAND有

3个输入事件,其图形符号如图3所示。当B 在A 之前失

效、C 在A 之前失效或B 和C 同时在A 之前失 效时,

PAND的输出事件失效。

图3 PAND门

Fig.3 PAND
 

gate

2)FDEP门。FDEP的输入事件包含一个触发事件和

一个或多个相关事件。基本事件或其他逻辑门可用作触

发事件。其他逻辑门的输入事件可用作输出事件。假设

一个FDEP有两个相关事件A 和B 以及一个触发事件

Tr,动态逻辑门如图4所示。当A 或B 失败或Tr失败导
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致A 和B 失败时,输出事件失败。

3)SQE门。虽然SQE和PAND都描述了系统的临时

特性,但它们在输入事件和失效机制上却有所不同。SEQ
的输入事件中有多个基本事件,而SEQ的失效机制是所有

基本事件都按一定顺序发生。假设SQE有n 个基本事件

输入,其图形符号如图5所示。只有当输入事件按1~n
的顺序失效时,输出事件才会失效。

图4 FDEP门

Fig.4 FDEP
 

gate

图5 SQE门

Fig.5 SQE
 

gate

4)备用门。备用门由一套备用部件和一个主要部件

组成,当主部件发生故障时,转换开关开始使备用部件运

行。备件门失灵的条件是所有备件都失灵,备件门中存在

休眠因子。根据休眠系数的大小,备件门具有以下状态:
冷备件(cold

 

spare,
 

CSP)、热备件(warm
 

spare,
 

WSP)和
热备件(hot

 

spare,
 

HSP)。图形符号如图6所示。3个逻

辑门的休眠系数分别为α=0、0<α<1和α=1。

图6 备用门

Fig.6 Spare
 

gate

在CSP逻辑门中,当系统开始工作时,基本事件进入

工作状态,而备用事件处于非工作状态。基本事件失效

后,备用事件开始工作,直到所有备用事件失效。WSP的

输入与CSP相同。CSP在使用前不会失效。但
 

WSP
 

在使

用前可能已经失效。其有两种故障过程。第一种是备件

不会失效,并能在主件失效后继续工作。第二种是暖部件

在主部件失效前已经失效。热备件的输入与 WSP相同。

HSP的基本事件和备用件同时运行。如果基本事件发生

故障,备件将成为基本事件。如果所有备件都失效,则系

统失效。

2.2 马尔可夫过程

  在马尔可夫过程[18](Markov
 

process,
 

MP)中,随机变

量在时间tn 的概率与随机变量在时间TN-1的值有关,而
与TN-1之前的过程历史无关,即“无记忆”。马尔可夫过

程的研究对象是可修复系统,分析工程系统可靠性的一

个基本假设是事件发生的时间服从指数分布,马尔可夫

过程中的过渡概率为常数,即齐次马尔可夫过程。随机

过程是 连 续 时 间 和 离 散 状 态 空 间 中 的 齐 次 马 尔 可 夫

过程:

P{X(t+h)}=j|X(t)=i}=
P{X(h)=j|X(0)=i}=pij(h) (11)
式中:X(t)表示随机过程在时间t时刻所处的状态;i与j
表示随机过程的状态,属于离散状态空间的元素;pij(h)表
示从状态i转移到状态j的转移概率函数,明确指出概率

只取决于时间间隔h。

P{X(t+h)=j|X(t)=i}=pij(Δt)≈qijΔt
(12)

P{X(t+Δt)=i|X(t)=i}=pij(Δt)≈1-qijΔt
(13)

式中:pij(Δt)表示从状态i转移到状态j 的状态转移概

率,取决于时间间隔Δt;qij 表示状态转移速率,在齐次连

续时间马尔科夫链中表示从状态i转移到状态j 的速率

(即单位时间的转移概率)。pij(Δt)公式表达如下:

pii(Δt)+∑
j≠i

pij(Δt)=1 (14)

式中:pii(Δt)表示状态在微小时间间隔Δt内保持不变的

概率。
转换概率可以组成一个矩阵,表示为:

P(Δt)=

p11Δt p12Δt … p1nΔt
p21Δt p22Δt … p2nΔt
︙ ︙ ︙

pn1Δt pn2Δt … pnnΔt

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁

(15)

将过渡密度矩阵定义为:

A=lim
Δt➝o

p(Δt)
Δt =

-q11 q12 … q1n

q21 -q22 … q2n

︙ ︙ ︙

qn1 qn2 … -qnm

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁

(16)

式中:n为状态总数。在实际工程应用中,一般期望的是系

统平稳运行时处于各种状态的概率,只需求解以下表达式

即可。
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PA =0

∑
n

j=1
Pj =1 (17)

式中:P 是由各静止状态的概率;Pj 组成的矩阵。得出系

统在各种状态下的概率后,就可以得出系统的其他可靠性

指标。
2.3 动态贝叶斯网络

  动 态 贝 叶 斯 网 络[19](dynamic
 

Bayesian
 

network,
DBN)是一种扩展了时间维度的贝叶斯网络,可用于为动

态系统建模。DBN基于一组以时间为索引的随机变量来

表示过程的不同状态。
动态是指正在模拟一个动态系统,而不是指网络会随

着时间的推移而变化。DBN是随机过程的有向以及循环

图形。DBN可通过有向无环图定义如下:

P(Zt|Zt-1)=∏
N

i=1
P(Zi

t|Pa(Zi
t)) (18)

式中:Zi
t 为时间t 的第i 个节点;Pa(Zi

t)为是Zi
t 的父

节点。
配电系统发生突发事件后,会随之发生一系列复杂的

事件。每次突发事件都可能以多种不同的方式影响许多

不同的用户。一般来说,同样的故障会导致某些客户的用

电瞬间中断,而其他用户的用电持续中断时间则有所不

同,这取决于系统的切换方式和故障修复所需的时间。配

电系统可靠性分析的关键在于准确模拟突发事件发生后

的事件序列,以反映不同客户所面临的不同后果。分析仿

真模拟的一般事件顺序为以下6个步骤。
步骤1)突发事件,系统发生故障。
步骤2)重合闸,重合闸装置打开,试图让故障排除。

如果故障排除,重合闸装置关闭,系统恢复正常。
步骤3)自动分段,看到故障电流的自动分段器在系统

被重合闸装置断电时打开,试图隔离故障。
步骤

 

4)锁定,如果故障持续存在,时间过流保护将清

除故障。锁定可以是执行重合闸功能的同一设备,也可以

是距离故障点更近的另一个设备。
步骤

 

5)切换,包括自动切换和手动切换。切换用于快

速隔离故障,并尽可能多地恢复对客户的供电。这包括上

游恢复和下游恢复。
步骤6)修复,修复故障,使系统恢复到故障前的状态。

3 评价指标与算法流程

3.1 源荷预测评价指标

  1)风光出力以及负荷准确性预测的评价标准。本文

选择绝对百分误差(MAPE)、平均绝对误差(MAE)和均方

根误差(RMSE)作为该评价标准。

MAPE=
1
n∑

n

i=1

yi-ŷi

yi
×100% (19)

MAE=
1
n∑

n

i=1

(yi-ŷi) (20)

RMSE=
1
n∑

n

i=1
ŷi-yi  2 (21)

式中:yi 为实际值;ŷi 为预测值;n表示样本总数。

2)概率预测评价指标。本文选择预测区间覆盖率

(PICP)用于评价预测区间中实际值的占比,体现预测区间

的可靠性。

PICP=
1
n∑

n

i=1
λi (22)

λi=
1,Yi∈ [Li,Ui]

0,Yi∉ [Li,Ui] (23)

式中:Yi 为第i个实际值;[Li,Ui]为第i个预测区间。
预测区间平均宽度(PIAW)作为评价预测区间宽度的

大小指标。

PIAW=
1
N∑

N

i=1

(Ui-Li) (24)

连续排序概率评分(CRPS)能够同时衡量可靠性和尖

锐度,用于评价概率预测质量:

CRPS=
1
N∑

N

i=1∫
+∞

-∞
[Fi(x)-H(x-yi)]2dx (25)

式中:Fi(x)表示为第i个预测概率分布的累积分布函

数;H(x)为实际值对应的 Heaviside阶跃函数。

3.2 可靠性评估指标

  配电网系统的整体可靠性由以下4个评价指标组成。
系统平均中断频率指数(SAIFI):

SAIFI=
∑
NL

j=1
λjNcus

j

∑
NL

j=1
Ncus

j

(26)

系统平均中断持续时间指数(SAIDI):

SAIDI=
∑
NL

j=1
UjNcus

j

∑
NL

j=1
Ncus

j

(27)

平均未供应能量指数(AENS):

AENS=
∑
NL

j=1
PjUj

∑
NL

j=1
Ncus

j

(28)

平均服务可用性指数(ASAI):

ASAI=
∑
NL

j=1
8760Ncus

j -∑
NL

j=1
UjNcus

j

∑
NL

j=1
8760Ncus

j

(29)

3.3 算法流程

  本文的配电网可靠性评估流程主要由两部分组成分

别是源荷预测与可靠性评估建模。
其中源荷预测部分包括 VMD分解、BiLSTM 时序建

·351·



 第48卷 电 子 测 量 技 术

模;可靠性评估建模包括动态故障树、马尔可夫过程、动态

贝叶斯网络。流程步骤如图7所示。

图7 算法流程

Fig.7 Algorithm
 

flowchart

4 实验结果与分析

4.1 点预测评价分析

  本文算例分析以贵州某城市为例,本文所用数据来源

于贵州地区2022年1月1日~12月31日的风速、光照强度

与负荷历史实测数据,采样时间间隔为15
 

min,数据覆盖不

同气候条件与节假日工况,具有代表性和时序复杂性。
为保证模型训练效果,先对原始数据进行归一化处理,

并采用滑动时间窗口方式构造样本数据集。整体数据集划

分比例为训练集80%,测试集20%。采用的评价指标为

MAE、RMSE、MAPE。实验对比 VMD-QRCNN、QRCNN-
LSTM、QRCNN-BiLSTM,实验结果如表1~3所示。风光

出力预测结果通过风速与光照强度功率转换公式可得。
从表1可以看出,4种方法在风电出力预测的 MAE、

RMSE和 MAPE指标上均表现出逐步优化的趋势。传统

的QRCNN-LSTM和QRCNN-BiLSTM 方法已具备较强

的时间建模能力,而引入VMD进行数据预处理后,VMD-
QRCNN和VMD-QRCNN-BiLSTM模型在各项指标上均

明显优于未使用 VMD的模型。特别地,VMD-QRCNN-
BiLSTM 方法在 MAE(0.137)、RMSE(0.185)和 MAPE
(8.4%)方面均为最优,表明该方法在处理风电出力中的

非平稳性和时序特征时具备更强的建模能力。

表1 4种方法风电出力预测结果对比

Table
 

1 Comparison
 

of
 

the
 

results
 

of
 

the
 

four
 

methods
 

of
 

wind
 

power
 

output
 

prediction
方法 MAE/MW RMSE/MW MAPE/%

VMD-QRCNN 0.213 0.297 13.4
QRCNN-LSTM 0.184 0.236 12.9
QRCNN-BiLSTM 0.167 0.246 10.8

VMD-QRCNN-BiLSTM 0.137 0.185 8.4

从表2中可以看出,所有模型在光伏出力预测中的误

差指标均较风电预测略高,说明光照强度的波动性带来了

额外挑战。VMD的引入在所有模型中均显著降低了误

差,尤其在与BiLSTM结合后,VMD-QRCNN-BiLSTM 模

型的 MAE降至0.143,RMSE为0.192,MAPE为9.6%,
再次验证其在捕捉非线性与长短期依赖方面的优越性。

表2 4种方法光伏功率预测结果对比

Table
 

2 Comparison
 

of
 

PV
 

power
 

prediction
 

results
 

of
 

four
 

methods
方法 MAE/MW RMSE/MW MAPE/%

VMD-QRCNN 0.198 0.267 12.8
QRCNN-LSTM 0.171 0.239 11.2
QRCNN-BiLSTM 0.166 0.221 10.5

VMD-QRCNN-BiLSTM 0.143 0.192 9.6

从表 3 中 可 以 看 出,QRCNN-BiLSTM 与 VMD-
QRCNN-BiLSTM在准确性指标上接近,但后者仍略胜一

筹,表明负荷的时序特性对双向建模更为敏感,同时VMD
对数据平稳化处理提升了整体鲁棒性。VMD-QRCNN-
BiLSTM的MAPE为9.1%,为4种模型中最低,说明该方

法对于复杂负荷预测任务具有较强适应性。

表3 4种方法负荷预测结果对比

Table
 

3 Comparison
 

of
 

load
 

forecasting
 

results
 

of
 

four
 

methods
方法 MAE/MW RMSE/MW MAPE/%

VMD-QRCNN 0.175 0.223 11.3
QRCNN-LSTM 0.165 0.239 10.8
QRCNN-BiLSTM 0.152 0.214 10.1

VMD-QRCNN-BiLSTM 0.138 0.172 9.1

  综上所述,本文所提方法负荷预测的评价指标值均是

4种方法中的最低值,表明所提方法能够更好地捕捉负荷

数据中的时序依赖性和非线性特征,预测精度明显高于其

他方法。

4.2 概率预测评价分析

  依据所采集风光出力以及负荷数据点,首先通过

VMD将原始风速和光照强度以及负荷时间序列分解为固

有模态分量;其次,通过 QRCNN对风速和光照强度以及

负荷进行特征提取;最后使用BiLSTM建模各变量的时间

序列特征,并生成预测值。生成风速与光照强度的预测值

后通过风光功率转换公式[20]得到风光出力数据。
为验证所提 VMD-QRCNN-BiLSTM 方法的优越性,

本 节 对 比 VMD-QRCNN、QRCNN-LSTM、QRCNN-
BiLSTM。为了简化图中表达,将这4种方法以 Method1、

Method2、Method3、Method4 分 别 表 示 VMD-QRCNN-
BiLSTM、 VMD-QRCNN、 QRCNN-LSTM、 QRCNN-
BiLSTM。图8与图9、10所示中的各方法用以上简化方

式表达。
风速预测结果比较如图8所示,可知,Method1的概率

密度曲线最接近实际值,而 Method1所指代的是 VMD-
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QRCNN-BiLSTM方法,因此可说明所提方法的优越性与

有效性。需要继续验证所提方法的有效性,可使用前文所

提出概率区间的评价指标。

图8 风速概率密度曲线对比

Fig.8 Comparison
 

of
 

wind
 

speed
 

probability
 

density
 

curves

图9 光照强度概率密度曲线对比

Fig.9 Comparison
 

of
 

probability
 

density
 

curves
 

of
 

light
 

intensity

图10 负荷概率密度曲线对比

Fig.10 Comparison
 

of
 

load
 

probability
 

density
 

curves

如表4所示为不同方法风速区间预测偏差,其中可以

看出,VMD-QRCNN-BiLSTM 方法区间预测偏差最小,

PICP值为97.8%对比其余3种方法最大;PINAW 值为

0.089对比其余3种方法最小;CRPS值为0.025
 

3对比其

余3种方法最小。通过以上评价指标可验证所提方法的

优越性与有效性。

表4 不同方法风速区间预测偏差

Table
 

4 Deviation
 

of
 

wind
 

speed
 

interval
 

prediction
 

by
 

different
 

methods
模型 PICP/% PINAW CRPS

VMD-QRCNN 94.4 0.145 0.049
 

5
QRCNN-LSTM 95.7 0.123 0.042

 

8
QRCNN-BiLSTM 96.5 0.118 0.032

 

1
VMD-QRCNN-BiLSTM 97.8 0.089 0.025

 

3

光照 强 度 预 测 结 果 比 较 如 图 9 所 示,由 图 可 知,

Method1的概率密度曲线最接近实际值,而 Method1所指

代的是 VMD-QRCNN-BiLSTM 方法,因此可说明所提方

法的优越性与有效性。需继续验证所提方法的有效性,可
使用前文所提出概率区间的评价指标。

如表5所示为不同方法光照强度区间预测偏差,其中

可以看出,VMD-QRCNN-BiLSTM 方法区间预测偏差最

小,PICP值为95.9%对比其余3种方法最大;PINAW 值

为0.116对比其余3种方法最小;CRPS值为0.0276对比

其余3种方法最小。通过以上评价指标可验证所提方法

的优越性与有效性。

表5 不同方法光照强度区间预测偏差

Table
 

5 Prediction
 

bias
 

of
 

light
 

intensity
 

intervals
 

by
 

different
 

methods
模型 PICP/% PINAW CRPS

VMD-QRCNN 93.2 0.165 0.056
 

1
QRCNN-LSTM 93.7 0.151 0.048

 

6
QRCNN-BiLSTM 94.8 0.138 0.041

 

3
VMD-QRCNN-BiLSTM 95.9 0.116 0.027

 

6

负荷预测结果比较如图10所示,由图可知,Method1
的概率密度曲线最接近实际值,而 Method1所指代的是

VMD-QRCNN-BiLSTM 方法,因此可说明所提方法的优

越性与有效性。需要继续验证所提方法的有效性,可使用

前文所提出概率区间的评价指标。
如表6所示为不同方法负荷区间预测偏差,其中可以

看出,VMD-QRCNN-BiLSTM 方法区间预测偏差最小,

PICP值为96.8%对比其余3种方法最大;PINAW 值为

0.107对比其余3种方法最小;CRPS值为0.0236对比其

余3种方法最小。通过以上评价指标可验证所提方法的

优越性与有效性。
本节概率区间预测使用对象为风速与光照强度,使用

功率转换公式便可得到风光出力以及负荷数据,风速与光
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照强度通过所提预测方法可较好预测,因此所转换的风光

出力以及负荷预测值与实际值的偏差较小。
表6 不同方法负荷区间预测偏差

Table
 

6 Load
 

interval
 

prediction
 

deviation
 

of
 

different
 

methods
模型 PICP/% PINAW CRPS

VMD-QRCNN 94.5 0.152 0.041
 

1
QRCNN-LSTM 94.9 0.142 0.035

 

2
QRCNN-BiLSTM 95.7 0.131 0.029

 

3
VMD-QRCNN-BiLSTM 96.8 0.107 0.023

 

6

由以上图表可知,所提方法通过概率区间评价指标以

及准确性评价指标均是优于其余方法,因此所提方法可更

好的对风光出力以及负荷进行预测。

4.3 可靠性评估分析

  算例分析采用IEEE
 

RBTS
 

Bus
 

2进行分析,如图11
所示。该系统包含4条馈线,22个负荷节点,10个联络开

关和2个合环开关。有6组分布式能源接入,假定出力变

化和与负荷演化定场景,用于模拟多元故障状态下系统的

接力和反应能力。系统中设置了不同类型的断路器和熔

断器FUS,以故障形成多条解路和转供途径,适用于DFT
  

图11 IEEE
 

RBTS
 

Bus
 

2拓扑结构

Fig.11 IEEE
 

RBTS
 

Bus
 

2
 

topology

分析和多速状态通路构造。
图11中,C1~C4表示各线路的断路器;FUS表示每

段馈线的熔断器;L1~L7表示馈线1所带负荷,L8~L9
表示馈线2所带负荷,L10~L15表示馈线3所带负荷,

L16~L22表示馈线4所带负荷;T1~T10表示联络开关;

H1和 H2表示合环开关,正常时为断开状态;DG1~DG6
表示分布式能源的接入(风光新能源)。

首先,通过 VMD-BiLSTM 算法预测获得1
 

200组光

风荷数据,作为输入使用IEEE
 

RBTS
 

Bus
 

2配电网系统进

行仿真;然后,采用本文所提DFT-MP-DBN方法对比蒙特

卡洛法(MC)、马尔可夫过程结合贝叶斯网络(MP-BN)、故
障树分析法结合马尔可夫过程(DFT-MP),如表7所示。

表7 4个方法的可靠性分析比较

Table
 

7 Comparison
 

of
 

reliability
 

analysis
 

of
 

the
 

four
 

methods

方法
SAIFI/
(次/户/年)

SAIDI/
(小时/户/年)

AENS/
(kWh/年)

ASAI/%

MC 0.472 4.724 25.631 99.812
MP-BN 0.543 6.213 30.183 99.854
DFT-MP 0.422 4.121 21.425 99.886

DFT-MP-DBN 0.231 3.496 17.465 99.943

  由表7可知,对比 MC的SAIFI降低约50%、SAIDI
缩短约26%,对比 MP-BN的 AENS减少约42%,对比3
种传统方法ASAI提升达到了99.943%,计算效率高,计
算准确性高。验证了本文所提DFT-MP-DBN的配电网可

靠性评估方法有效性和优越性。
为全面验证所提DFT-MP-DBN方法在不同局部区域

的可靠性评估效果,本文特别选取了网络结构中两个关键

区域进行深入对比分析:一是负荷最集中的节点L6,该节

点连接多个末端负载,具有显著的用电密度与敏感性,是
反映用户侧影响的代表;二是DG4-DG6分布式电源集中

接入区域,该区域汇集了多个新能源接入点,其输出功率

波动大,且与配电网络的互动最为频繁,对系统运行稳定

性具有重要影响。
此外,本文还对其他典型区域(如L1~L5、L10~L15

等)进行了测试,结果显示:DFT-MP-DBN方法在各区域

的表现均优于其他方法,趋势一致,但在上述两个关键区

域优势更为明显。因此,选择L6和DG接入区域作为代

表,重点展示其在高负载与高波动区域的评估能力。并分

别对比4种方法(MC、MP-BN、DFT-MP、DFT-MP-DBN)
在这些关键区域下的SAIFI、SAIDI、AENS和 ASAI指标

结果如表8所示。
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表8 局部节点可靠性指标对比

Table
 

8 Comparison
 

of
 

local
 

node
 

reliability
 

indicators
局部节点位置 方法 SAIFI/(次/户/年) SAIDI/(小时/户/年) AENS/(kWh/年) ASAI/%

节点L6

MC 0.821 5.873 3.105 99.722
MP-BN 0.892 6.334 3.843 99.681
DFT-MP 0.752 4.061 2.568 99.762

DFT-MP-DBN 0.311 2.126 1.912 99.881

DG4~DG6接入点

MC 0.714 4.932 2.994 99.758
MP-BN 0.768 5.487 3.416 99.729
DFT-MP 0.603 3.412 2.111 99.790

DFT-MP-DBN 0.248 1.873 1.475 99.914

  如表8所示,分析可得在节点L6处,DFT-MP-DBN
方法在所有指标上均显著优于其他3种方法,特别是在

SAIFI和 SAIDI上 相 较 于 MP-BN 分 别 下 降62.1%和

63.8%,说明该方法能更准确识别故障链条并动态调整故

障隔离与恢复策略;DG集中接入点,DFT-MP-DBN对分

布式电源引起的波动与失效影响具备更强鲁棒性和预测

能力,ASAI提升至99.914%,展现出优越的局部服务保障

能力;相比传统的 MC 和静态 MP-BN 方 法,DFT-MP-
DBN的动态推理机制和故障演化建模显著增强了对高风

险节点的识别与保护作用。

5 结  论

  为提高配电网可靠性评估的效率和精度,融合VMD-
QRCNN-BiLSTM预测与DFT-MP-DBN建模的主动配电

网可靠性评估方法,得出以下结论:
在风光荷预测方面,VMD-QRCNN-BiLSTM 预测方

法在 MAE、RMSE、MAPE
 

三项核心指标上全面优于对比

模型,尤其在光照预测中表现最为突出,体现了其对突变

和非平稳信号的强鲁棒性。
在可靠性评估建模方面,由于融合 VMD-QRCNN-

BiLSTM 预 测 使 得 DFT-MP-DBN 方 法 能 够 显 著 降 低

SAIFI、SAIDI,提高ASAI,减少AENS,均优于其他方法,
显著减少了用户中断事件,缩短了停电时长,并提升了系

统整体与局部的供电保障能力。
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