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Active distribution network reliability assessment based on wind and light
load prediction and DFT-MP-DBN modelling

Mou Jinlin  Yang Chao

(Department of Electrical Engineering, Guizhou University,Guiyang 550025, China)

Abstract: With the rapid development of distributed energy resources, accurate prediction of their output has become a
critical component in the reliability assessment of distribution networks. To enhance the accuracy of such assessments.
this paper proposes a reliability evaluation method for active distribution networks that integrates VMD-QRCNN-
BiLSTM-based forecasting with DFT-MP-DBN modeling. First, the original time series data of wind power, solar
power, and load are decomposed into intrinsic mode components using Variational Mode Decomposition (VMD).
Then, a Quantile Regression Convolutional Neural Network (QRCNN) is employed to extract the temporal features,
and a Bidirectional Long Short-Term Memory (BiILSTM) network is used to model each variable and generate accurate
forecasts. These predicted values are then input into a Dynamic Fault Tree (DFT), where a Continuous-Time Markov
Process (MP) is used to compute the state transition rate matrix. Finally, a Dynamic Bayesian Network (DBN) is
applied to capture the temporal dependencies among system states and incorporate observed or control variables. Case
studies based on the IEEE RBTS Bus 2 system show that the proposed method achieves superior reliability
performance, with SAIFI, SAIDI, AENS, and ASAI values of 0. 231 times/customer/year, 3.496 hours/customer/
year, 17.465 kWh/year, and 99.943%, respectively—significantly outperforming traditional approaches. These
results validate the effectiveness and advantages of the proposed method in improving the precision and efficiency of
distribution network reliability assessments.

Keywords: distribution network reliability assessment;scenic load forecast; DET-MP-DBN; VMD-QRCNN-BiLSTM
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Table 1 Comparison of the results of the four methods of

wind power output prediction

ks MAE/MW RMSE/MW MAPE/%
VMD-QRCNN 0.213 0.297 13.4
QRCNN-LSTM 0.184 0.236 12.9
QRCNN-BiLSTM 0.167 0. 246 10. 8
VMD-QRCNN-BiLSTM 0. 137 0.185 8.4

M 2 tpoal LUA L B A7 55 TE S ARt g B g i
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#11 MAE F&Z 0. 143, RMSE 4 0. 192, MAPE 4 9. 6%,
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Table 2 Comparison of PV power prediction results

of four methods

J7 ik MAE/MW RMSE/MW MAPE/%
VMD-QRCNN 0.198 0.267 12.8
QRCNN-LSTM 0.171 0.239 11.2

QRCNN-BiLSTM 0.166 0.221 10.5
VMD-QRCNN-BiLSTM 0. 143 0.192 9.6

M 3 ] L FE B, QRCNN-BILSTM 5 VMD-
QRCNN-BILSTM 75 i 4 46 o5 b 32308 , (A5 & 47 0 i —
S, 2 W 67 A B A e X L i A T O A0, TR B VMID
Xt BUHE 7 fa Ak b B AR T T R RS B . VMD-QRCNN-
BiLSTM 1) MAPE 2y 9. 1% , 2y 4 FBE Y e 5 A%, wd W1 % 7
R T A O e U AT 45 LA 0 A I
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Table 3 Comparison of load forecasting results

of four methods

Ik MAE/MW RMSE/MW  MAPE/%
VMD-QRCNN 0.175 0.223 11.3
QRCNN-LSTM 0.165 0.239 10. 8

QRCNN-BiLSTM 0.152 0.214 10. 1
VMD-QRCNN-BiLSTM 0. 138 0.172 9.1
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SV 35 A2 TS . A= i XU 5 5 IR i 2 A T8 30 {0
J 3 o RO oy S 4 A S AR B KO s B

J9EAE I $2 VMD-QRCNN-BILSTM J7 ¥k A9 41 e 1k
A # X VMD-QRCNN, QRCNN-LSTM, QRCNN-
BiILSTM, T fiifb B 3Rk 4 3X 4 F J5 2 L Methodl,
Method2. Method3, Method4 43 % % 75 VMD-QRCNN-
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BiLSTM. &8 5K 9.10 fr/w A4 ik L. B e h
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Fig. 8 Comparison of wind speed probability density curves
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Fig. 10 Comparison of load probability density curves
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Table 4 Deviation of wind speed interval prediction

by different methods

F A PICP/ % PINAW CRPS
VMD-QRCNN 94. 4 0.145 0.049 5
QRCNN-LSTM 95.7 0.123 0.042 8

QRCNN-BiLSTM 96. 5 0.118 0.032 1
VMD-QRCNN-BIiLSTM 97.8 0.089 0.025 3

O B A B TN &5 SR g B9 i w, il B T A
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Table 5 Prediction bias of light intensity intervals

by different methods

HEHY PICP/ % PINAW CRPS
VMD-QRCNN 93.2 0.165 0.056 1
QRCNN-LSTM 93.7 0.151 0.048 6

QRCNN-BiLSTM 94. 8 0.138 0.041 3
VMD-QRCNN-BiLSTM 95.9 0.116 0.027 6
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Table 6 Load interval prediction deviation
of different methods

AR PICP/ % PINAW CRPS
VMD-QRCNN 94.5 0.152 0.041 1
QRCNN-LSTM 94. 9 0.142 0.035 2

QRCNN-BiLSTM 95.7 0.131 0.029 3
VMD-QRCNN-BIiLSTM 96. 8 0.107 0.023 6
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Table 7 Comparison of reliability analysis of

the four methods

SAIFI/ SAIDI/

AENS/

ik QR/ P4 ORI/ P /4) (kWh/4F) ASAL
MC 0.472 4.724 25.631 99. 812
MP-BN 0.543 6. 213 30. 183 99. 854
DFT-MP 0.422 4.121 21.425 99. 886
DFT-MP-DBN 0.231 3.496 17. 465 99. 943
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Table 8 Comparison of local node reliability indicators
JR TR AL Wik SATFI/ R/ J7 /4 SAIDL/ UM/ P /4E)  AENS/ (kWh/4E) ASAL/ %
MC 0. 821 5. 873 3.105 99. 722
. MP-BN 0. 892 6.334 3. 843 99. 681
L6
DFT-MP 0. 752 4.061 2.568 99. 762
DFT-MP-DBN 0.311 2.126 1.912 99. 881
MC 0.714 4.932 2.994 99. 758
MP-BN 0.768 5. 487 3.416 99. 729
DG4~DG6 $5 A i
DET-MP 0.603 3.412 2.111 99. 790
DFT-MP-DBN 0. 248 1.873 1. 475 99.914
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