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摘 要:为了解决高阶调制场景下大规模 MIMO检测算法的误码性能受限问题,提出一种新型信号检测网络。该网

络基于投影梯度下降构建逼近最大似然解的迭代结构,并将迭代过程转化神经网络实现。在每个网络单元中首先通

过神经网络学习参数,其次经过所设计的归一化多段激活函数进行非线性变换以增强网络在高阶调制下的映射能力,
最后通过去噪器消除估计误差和信道噪声,此外,为了解决在网络深度增加时准确率下降问题,网络单元之间采用残

差连接。仿真结果表明,当系统收发天线数为64×32,信噪比为16
 

dB时,所提出检测网络的误码率接近10-4,与其

他检测算法相比,误码率降低一个数量级,表现出接近最优检测算法的误码性能,且具有较好的鲁棒性。
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Abstract:
 

To
 

address
 

the
 

limitation
 

of
 

error
 

performance
 

in
 

Massive
 

MIMO
 

detection
 

algorithms
 

under
 

high-order
 

modulation
 

scenarios,
 

a
 

novel
 

detection
 

network
 

is
 

proposed.
 

This
 

network
 

is
 

constructed
 

based
 

on
 

a
 

projected
 

gradient
 

descent
 

framework
 

that
 

approximates
 

the
 

maximum
 

likelihood
 

solution
 

through
 

an
 

iterative
 

structure,
 

which
 

is
 

then
 

implemented
 

using
 

a
 

neural
 

network.
 

In
 

each
 

network
 

module,
 

parameters
 

are
 

first
 

learned
 

through
 

a
 

neural
 

network,
 

followed
 

by
 

a
 

nonlinear
 

transformation
 

using
 

a
 

designed
 

normalized
 

multi-segement
 

activation
 

function
 

to
 

enhance
 

the
 

network's
 

mapping
 

capability
 

under
 

high-order
 

modulation.
 

Finally,
 

a
 

denoiser
 

is
 

employed
 

to
 

eliminate
 

estimation
 

errors
 

and
 

channel
 

noise.
 

Furthermore,
 

to
 

tackle
 

the
 

issue
 

of
 

accuracy
 

degradation
 

with
 

increased
 

network
 

depth,
 

residual
 

connections
 

are
 

introduced
 

between
 

network
 

modules.
 

Simulation
 

results
 

show
 

that
 

when
 

the
 

number
 

of
 

transmitting
 

and
 

receiving
 

antennas
 

of
 

the
 

system
 

is
 

64×32
 

and
 

the
 

signal-to-noise
 

is
 

16
 

dB,
 

the
 

bit
 

error
 

rate
 

of
 

the
 

proposed
 

detection
 

network
 

is
 

close
 

to
 

10-4,
 

and
 

the
 

bit
 

error
 

rate
 

is
 

reduced
 

by
 

an
 

order
 

of
 

magnitude
 

compared
 

with
 

other
 

detection
 

algorithms,
 

showing
 

the
 

bit
 

error
 

performance
 

close
 

to
 

the
 

optimal
 

detection
 

algorithm,
 

and
 

has
 

good
 

robustness.
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0 引  言

  大规模 MIMO技术具有数据传输速率高、信道容量大

的显著优势,有效缓解频谱资源有限与不断增长的容量需

求之间的矛盾[1-2]。然而,大规模 MIMO对高维信号处理

时的复杂性也带来了新的挑战,其中最核心的挑战之一便

是如何在庞大的天线规模和复杂信道条件下,快速且准确

地从失真的接收信号中检测出各个数据流的信息。

为解决这一关键问题,研究者提出了多种信号检测方

法,主要可分为传统检测方法和基于深度学习的方法。其

中传统信号检测方法包括最大似然(maximum
 

likelihood,
 

ML)检测、线性检测和非线性检测。其中最大似然检测通

过对所有可能的发射符号向量进行穷举搜索,计算其与接

收信号在信道作用下的欧式距离,并选择距离最小者作为

检测结果,具有理论上的最优误码性能,但其计算复杂度随

系统规模呈指数级增长,已被证明为NP-hard问题[3],因此
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难以直接应用于大规模 MIMO系统。为了在性能与复杂

度之间取得平衡,随后提出了线性检测方法和非线性检测

方法。常用的线性检测方法如迫零[4](zero
 

forcing,ZF)检
测与 最 小 均 方 误 差[5](minimum

 

mean
 

square
 

error,

MMSE)检测等。这类方法将期望信号以外的其他信号视

为干扰,通过最小化干扰来进行信号检测,具有实现简单,
复杂度较低等优点。非线性检测方法是线性检测的拓展,
如近似消息传递(approximate

 

message
 

passing,
 

AMP)[6]

是一种典型的非线性检测方法,其核心思想是将系统建模

为图结构,通过引入统计平均和残差修正项,对传统贝叶斯

消息传递过程进行近似,大幅降低了计算复杂度,但该方法

对信道分布的依赖性较强,在非理想信道中稳定性不足。
基于以上分析,传统信号检测方法在误码性能和计算复

杂度之间难以实现有效平衡,尤其在大规模 MIMO系统中

更显局限。为解决这一问题,近年来研究者开始借助深度学

习的强大建模能力探索新的检测策略。随着其在图像识

别[7-8]、自然语言处理[9-10]和行为识别[11-12]等领域取得显著成

果,深度学习已被广泛应用于通信系统的各类信号处理任

务,其中 MIMO信号检测成为研究的重点方向之一,并涌现

出多种基于深度学习的信号检测网络。典型如DetNet[13],
基于投影梯度法构建可端到端训练的神经网络,在实现较高

检测精度的同时具备可学习参数,但因采用全连接架构,导
致参数规模庞大,复杂度随网络深度显著上升。为此,

ScNet[14]则通过对DetNet分别从网络输入、连接结构和损失

函数三方面的简化处理,明显降低了计算复杂,但ScNet对

DetNet结构的过度简化导致其在复杂信道和高阶调制场景

下,其检测精度和泛化能力受限。基于此,RPD-Net
 [15]引入

结构随机性机制,在保持DetNet基本框架的同时,通过随机

扰动加先验信息方式强化网络的表达能力,从而在提升检测

性能的同时兼顾泛化能力与计算效率;为进一步增强检测网

络对多用户干扰和噪声扰动的抑制能力,后续研究提出了

EScNe[16]。该模型融合了卷积神经网络与传统干扰消除机

制,通过串行或并行的干扰抵消结构强化特征提取过程,有
效提升了网络在大规模 MIMO场景中的干扰抑制能力和检

测精度;文献[17]提出的基于迭代软阈值理论的 MMNet,通
过并引入可学习参数以实现自适应调整,有效细化了信号估

计过程,缓解了误差扩散问题,进一步为基于深度学习的检

测算法在实际系统中的应用提供了新的思路。
综上所述,尽管现有基于深度学习的检测网络在误码

性能与计算复杂度之间取得了一定平衡,但在高阶调制场

景下仍存在误码性能受限问题,一方面,多轮迭代中缺乏对

误差传播机制的有效控制,容易造成估计误差的累积放大;
另一方面,复杂的星座结构对检测网络的特征提取与判决

边界提出了更高要求,从而影响网络检测的误码性能。为

克服上述问题,提出了一种基于投影梯度下降迭代展开的

最大 似 然 检 测 网 络,命 名 为 MDNet(multi-segement
 

denoise
 

network)。其创新之处在于:1)设计了一种“激活

函数-去噪器”顺序优化结构,使得在完成非线性激活后立

即进行误差抑制,从而有效缓解误差放大与通道噪声的干

扰;2)提出归一化多段激活函数,利用组合sigmoid结构增

强其对复杂符号分布的适应能力,有效解决传统激活函数

对高阶调制下星座映射能力不足的问题。

1 算法原理

  MDNet的整体迭代框架如图
 

1所示,该框架主要由两

个阶段构成:信号预处理阶段与信号估计阶段。在信号预

处理阶段,接收端接收到的信号y与已知信道矩阵HH ,经
线性变换后生成有用的中间信息HHy 与HHH ,并结合上

一轮迭代得到的估计信号x̂k 将三者作为输入传递至网络

单元K 进行信号估计。在信号估计阶段中,来自预处理阶

段的HHy、HHHx̂k 以及x̂k 三个向量首先通过神经网络线

性运算,随后通过提出的归一化多段激活函数进行非线性

变换,从而获得中间估计信号。该中间估计信号与由信号

估计误差累积项以及通道噪声项共同构成的总噪声方差一

起作为输入送入去噪模块进行估计误差消除和噪声抑制处

理。最终,去噪器输出当前迭代的信号估计结果x̂k+1,并通

过残差结构处理后以供下一轮迭代使用。

图1 MDNet的整体迭代框架

Fig.1 The
 

iterative
 

framework
 

of
 

MDNet

2 系统模型

2.1 接收信号模型

  在 MIMO 系统中发射天线数为 Nt,接收天线数为

Nr,其中Nt≤Nr,其接收信号可以表示为:

yC=HCxC+nC (1)

其中,发射信号为xC∈χNt×1,χ 表示信号星座点的集

合,发射信号通过 MIMO时变衰落信道HC∈C
Nr×Nt

传输
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到达接收端,nC∈C
Nr×1

是均值为0,协方差矩阵为σ2I加

性高斯白噪声。
为了应用于神经网络,而需将复数域模型转换为实数

域,其等价的实数模型为:

y=Hx+n (2)

y= Ryc  

Iyc  
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , H = RHc  

IHc  
􀭠
􀭡

􀪁
􀪁 -IHc  

RHc  

􀭤

􀭥

􀪁
􀪁􀪁 ,

x= Rxc  

Ixc  
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , n= Rnc  

Inc  
􀭠
􀭡

􀪁
􀪁 􀭤
􀭥

􀪁
􀪁

(3)

其中,R(·)表示该值的实部,I(·)表示该值的虚部,

x∈R
2Nt,H ∈R

2Nr×2Nt,y∈R
2Nr,n∈R

2Nr 。

2.2 提出的 MDNet模型

  MDNet是基于投影梯度下降法求 ML解问题的迭代

展开,而最大似然估计可表示为以下优化问题:

x̂ML =argmin
x∈χM

‖y-Hx‖2
2 (4)

为求解上述问题,引入梯度下降法,并在每一步将结

果投影回可行域χM ,则对应的投影梯度下降更新公式为:

x̂k+1=Π x̂k -δk▽‖y-Hx‖2
2  (5)

其中,δk 为第k次迭代的步长,Π[·]表示将向量投影

到可行域χM 。
将梯度展开,式(5)可表示为:

x̂k+1=Π x̂k -δkHHHx̂k +δkHHy  (6)
上式迭代可用神经网络实现,其中,神经网络有K 层,

每一层为一个网络单元,K 层则对应K 次迭代,并用可学

习参数Wk 和bk 替代固定步长δk ,用归一化激活函数替代

投影算子。在网络单元中,将x̂k,HHy和HHHx̂k 通过先后

通过向量拼接、神经网络、归一化多段激活函数和去噪器

一系列过程处理。具体地,MDNet网络结构如图
 

2所示。

图2 MDNet网络结构

Fig.2 Network
 

structure
 

of
 

MDNet

  首先,x̂k,HHy和HHHx̂k 进行拼接后输入神经网络经

过线性变换得到如下形式:

vk =f

HHy

x̂k

HHHx̂k

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁  (7)

其中,vk 是经过神经网络线性变换的输出信号,f(·)
代表神经网络中线性运算部分,即:

vk =Wk

HHy

x̂k

HHHx̂k

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁 +bk (8)

式中:Wk 和bk 是分别是第k 层的基础权重和偏置。进一

步经过激活函数非线性变换得到:

zk =ρk vk  (9)
其中,zk 是经过激活函数非线性变换输出的中间估计

信号,ρk(·)是激活函数。然而传统激活函数(如sigmoid、

ReLU)的输出范围受限,难以覆盖高阶调制星座点的动态

范围,导致在高阶调制场景下检测性能受限。为此,以sigS
函数[18]为基础设计一种归一化多段激活函数ρk(·),其设

计如下:

ρk(x)=
L

pnorm
+

E
pnorm
∑
2l-1

t=1
pnormgtavk+ 

ht[5+(-1)t(10t-5)] (10)
为了使激活函数具有更好的泛化能力和灵活性,进行

了功率归一化。其中L 为不同调制方式下星座点符号集

合的最小值,E 为相邻符号间的最小欧氏距离,星座点集

的总数为2l,gt 和ht 为一组可训练参数并将初始值设为

1,确保激活函数原有的结构不发生变化,a 代表斜率,而

pnorm 用于归一化,具体如下:

pnorm =2×
1
M∑

M

j=1
cj

2 (11)

其中,cj 表示M-QAM星座点,M 是星座点总数。
为解决迭代过程中存在的估计误差累积问题和信道

噪声干扰问题,在激活函数非线性变换后引入去噪器模

块,通过将中间估计信号与总噪声方差作为输入传递给去

噪器进行去噪处理:

x̂k+1 =η(zk;σ2k) (12)
其中,η(·)是去噪器,zk 是中间估计信号,σ2k 代表总

噪声方差,具体如下:

x̂k+1 =EE x zk,σ2k  (13)
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其中,EE[·]是求条件期望,对式(13)进一步展开

得到:

x̂k+1 =∑
M

j=1

exp(-(zk,j -cj)2/2σ2k)

∑
M

k=1
exp(-(zk,j -ck)2/2σ2k)

cj (14)

其中,cj 是当前直接参与分子计算的星座点,ck 是分

母中用于归一化的所有星座点的集合,确保权重转化为概

率分布。通过式(14)可以看出,去噪器是对zk 的每个元素

zk,j 计算与星座点cj 的差值,平方后并归一化得到高斯似

然项,再用softmax式转化为概率分布,最后将星座点与概

率分布加权求和输出该次迭代的最终估计信号x̂k+1。
上式中总噪声方差σ2k 的公式定义如式(15)所示。

σ2k =
θk

Nt

‖I-HHH‖2
F

‖H‖2
F

‖y-Hx̂k‖2
2-  

Nrσ2 +
‖HH‖2

F

‖H‖2
F
σ2 (15)

其中,σ2 为信道噪声方差,θk 是可学习参数。由总噪

声方差公式可以看出,去噪器输入处的噪声由两部分组

成:估计x̂k 与x 的真实值偏差引起的误差以及信道噪声带

来的影响。第1个分量通过线性变换 I-HHH  放大,
第2个分量通过HH 放大。

此外,为避免出现梯度消失和爆炸现象,以及在网络

深度增加时准确率下降的问题,在去噪器完成对误差和噪

声的处理后引入残差神经网络(residual
 

neural
 

network,

ResNet)[19]中的残差结构,以改善网络单元之间的信息传

输。残差结构的表达形式如下:

x̂ink+1 =μxout
k +(1-μ)x̂in

k (16)

式中:μ为残差系数,x̂in
k,x̂out

k 分别用于表示第k个单元的

输入向量与输出估计向量。从上述公式可以看出,残差结

构的本质是在当前单元中,通过将上一单元的输入与输出

分别乘以残差系数并加权融合,生成新的输入。

最后x̂k 的初始值设定为0。MDNet的损失函数通过

加权均方误差(mean
 

squared
 

error,MSE)衡量预测结果

x̂k 与真实值x 的偏差,并结合x~ 进行归一化:

Lossx;x̂k  =∑
K

k=1
log(k)

‖x-x̂k‖2

‖x-x~‖2

(17)

式中:

x~ = HHH  -1HHy (18)

3 实验仿真与性能评估

3.1 实验环境及相关参数配置

  实验基于PyTorch深度学习框架完成,结合式(1)描
述的模型通过代码生成仿真数据集。在该模型中有3个

关键随机变量:信号xC,信道矩阵HC 和信道噪声nC。传

输信号xC从归一化的星座点集合中均匀随机生成,信道矩

阵HC选用时变瑞利衰落模型,并满足N(0,1)的独立同分

布(i.i.d)条件[20],信道噪声nC 的每个元素从零均值、(i.i.
d)的复高斯分布中采样,噪声功率σ2 根据目标信噪比

(signal-to-noise
 

ratio,SNR)动态调整。其中每一组y、H、

x被视为一组训练样本,在训练阶段共生成约1
 

000万组

样本,测试阶段生成约500万组样本,训练与测试数据通

过不同批次在线生成方式构造,逻辑上保持独立。在训练

过程中,SNR在给定区间内按整数均匀随机采样,从而使

训练集中各SNR对应的样本数量近似均匀分布;而测试

阶段则在每一个固定的SNR点上均生成相同数量的测试

样本,从而保证在不SNR水平下的性能评估具有可比性。
此外,在梯度下降过程中,通过 Adam优化器对参数进行

更新,实验中相关参数具体设定如表1所示。

表1 实验相关参数设置

Table
 

1 Experimental
 

parameters
 

settings

参数 值

调制方式 QPSK,16QAM
初始学习率lr 0.001

衰减率(decay_rate) 0.97
衰减步长(decay_steps) 500
批处理大小(batch_size) 2

 

000
训练轮数(Epoch) 5

 

000

3.2 误码性能评估

  误符号率(symbol
 

error
 

rate,SER)是评价 MIMO信

号检测算法检测性能的重要指标。图
 

3为大规模
 

MIMO
系统中发送 端 天 线 数32接 收 端 天 线 数64的 配 置 下,

QPSK调制方式下多种检测算法的SER随信噪比变化的

性能曲线。所对比的算法包括传统的零强迫(ZF)与最小

均方误差方法(MMSE),以及3种基于深度学习的检测算

法:DetNet、ScNet与所提出的 MDNet。同时引入最大似

然检测(ML)作为性能上界参考。

图3 Nt=32,
 

Nr=64时各算法误码性能比较

Fig.3 Error
 

performance
 

comparison
 

of
 

algorithms
 

when
 

Nt=32,
 

Nr=64
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通过试验可以看出,随着SNR的升高,各检测方法的

SER均呈现下降趋势。其中,经典检测方法ZF与 MMSE
在整个SNR区域内性能较弱,检测精度提升受限。相比

之下,基于神经网络的检测方法表现出更优的鲁棒性与拟

合能力,明显优于经典检测方法。而 MDNet的SER曲线

在全程优于 DetNet和ScNet,并在10
 

dB时SER 接近

10-5,逼近最优的 ML检测性能,实验结果验证了所提出

算法的有效性。
为了验证提出的算法在不同调制方式下的误码性能,

图
 

4在发射天线数32,接受天线数64,不同调制方式下

(QPSK和16QAM)进行了各算法误码性能比较实验结果

表明,所有检测算法在16QAM 调制下的误码性能均显著

低于QPSK调制。这一现象可归因于16QAM 调制方式

在相同带宽条件下传输更高阶的符号信息,使得信号星座

点间的欧氏距离减小,从而对信道噪声和干扰更为敏感,
显著增加了信号检测的复杂度。值得注意的是,在两种调

制方式下,基于深度学习的检测方法均展现出优于传统算

法的误码性能。这一优势主要源于神经网络强大的非线

性建模能力。特别地,所提出的 MDNet在低阶(QPSK)和
高阶(16QAM)调制下,其性能均最接近最优 ML检测算

法,且在16QAM调制下表现出明显的性能优势。这一优

异性能得益于所设计的归一化多段激活函数,该函数有效

增强了网络的非线性映射能力,使其能够更好地适应高阶

调制下更为复杂的信号检测需求。

图4 不同调制方式下各算法误码性能比较

Fig.4 BER
 

comparison
 

of
 

detection
 

algorithms
 

across
 

modulation
 

types

  为验证网络结构中激活函数与去噪器的排列顺序对

信号检测的影响,图
 

5在16QAM调制方式、发射天线数为

32、接收天线数为64的设定下,进行了3组结构差异化的

消融实验,并绘制了对应的SER性能曲线。

图5 Nt=32,
 

Nr=64时不同网络结构对SER的影响

Fig.5 The
 

impact
 

of
 

different
 

network
 

architectures
 

on
 

SER
 

when
 

Nt=32,
 

Nr=64

先后测试了3种网络结构:仅包含激活函数、不含去

噪器的结构(MDNet-no-denoise);先进行去噪处理后接激

活函数的结构(MDNet-denoise-act);先进行激活操作后接

去噪器的结构(MDNet-act-denoise)。从实验结果可观察

到,先进行激活操作后接去噪器的网络结构在整个SNR
区间内均展现出最低的SER,特别是在SNR为21

 

dB
 

时,

SER降至10-8,相较其他两种结构提升了1~2个数量级。
上述结果表明,将激活函数置于去噪器之前有助于增强网

络的非线性表达能力,从而提升误码性能。因此,MDNet
最终选用该结构作为其核心组成。

鉴于激活函数在网络中的关键作用,图
 

6在16QAM
调制方式,64×32的天线数配置下,比较了不同激活函数

对 MDNet的误码性能影响。对比的3种激活函数分别

为:ψt(·)激活函数[14],sigS激活函数,以及采用所提出的

归一化多段激活函数ρk(·)。
从实验结果可以看出,3种激活函数在SNR为9

 

dB
表现相近,SER皆维持在10-1 左右,差异尚不明显。但随

着SNR提升,误码性能差异迅速拉开。在SNR为15
 

dB,

MDNet-ρk(·)的SER
 

已下降至10-3
 

,相比其他两种激

活函数已经可以观察到明显优势。而在SNR为21
 

dB,

MDNet-ρk(·)的SER更是突破至
 

10-8 数量级,而其他
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图6 Nt=32,
 

Nr=64时不同激活函数对SER的影响

Fig.6 The
 

impact
 

of
 

different
 

activation
 

functions
 

on
 

SER
 

when
 

Nt=32,
 

Nr=64

两种激活函数的检测误差仍停留在10-6 左右,说明所提出

的归一化多段激活函数在高阶调制下具有更好的误差收

敛性与映射精度。

MIMO
 

的核心优势在于多天线架构能够实现空间复

用与分集,显著改善系统性能[21],因此对 MIMO空间复用

的应用场景进行了性能评估。
图

 

7为16QAM调制方式下,发射天线数16,接收天

线数分别为16、24、32以及64的4种不同检测曲线的对

比。结果表明,当接收天线数量上升时误码性能逐渐提升

并在Nr 为64时SER达到10-9。值得注意的是,更多的

接收天线在相同的误码率下需要的信噪比更低,这是由于

接收端获得的高分集增益,对于提高系统性能的贡献大于

高信噪比。因此,对于提高系统的可靠性,适当增加接收

天线数是一种有效措施。

图7 不同接收天线数量对SER的影响

Fig.7 Impact
 

of
 

receive
 

antenna
 

number
 

on
 

SER

基于网络收敛速度与稳定性分析,图
 

8是在QPSK调

制方式以及64×32的天线数目下,所提出的 MDNet模型

与ScNet在训练过程中的损失函数(Loss)随训练轮数

(Epoch)变化的演化轨迹。横轴为训练轮数,纵轴为损失

值,采用对数尺度以增强对模型收敛特性的解析能力。从

结果可见,MDNet在训练初期即展现出显著的收敛速率,
仅经过1

 

000
 

Epoch
 

即将损失值压降至10-1 以下,随后维

持平稳下降并在约2
 

000
 

Epoch后趋于收敛,整体过程波

动幅度较小,体现出优良的训练稳定性与优化效率。相比

之下,ScNet虽同样具备初始快速下降的趋势,但在整体收

敛过程中表现出更高的损失值,且后期曲线波动较为明

显。综上所述,MDNet在训练过程中展现出更低的损失值

与良好的稳定性。

图8 网络收敛速度与稳定性对比

Fig.8 Comparison
 

of
 

network
 

convergence
 

speed
 

and
 

stability

3.3 复杂度分析

  在基于深度学习的MIMO信号检测算法中,通常以实

乘次数作为衡量其计算复杂度的标准,实数乘法的数量与

系统中的天线和符号数量相关。考虑到实数加法的线性

特性,其对计算复杂度影响不大。在基于
 

MMSE
 

的检测

策略中,计算量主要来自滤波矩阵的搭建与匹配滤波过

程。而在深度学习检测方法中,计算量集中在各层所执行

的矩阵乘法上。PyTorch以张量(Tensor)为基础进行运

算,其乘法次数由相关矩阵的维度决定。为更直观地评估

模型,可进一步引入FLOPs(floating
 

point
 

operations)指
标,用于衡量网络在推理过程中的实际浮点运算次数,从
而更准确地反映网络的计算资源需求。

首先在 MDNet中,复杂度分为4部分计算。第1部

分为输入数据预处理时所作的乘法,其中 HHy、HHH 和

HHHx̂k 分别作了4NrNt、8NrN2
t 以及4N2

t 次乘法运算;
第2部分是中间估计信号zk 的计算复杂度,预处理的输出

数据总拼接维度为6Nt,则该部分计算复杂度为6DNt,D
表示线性变换权重矩阵Wk 的输出维度;第3部分是去噪

器中的乘法运算,去噪器的本质是将输入zk 作为先验估计

值,并使用高斯似然加Softmax归一化,对星座点集合做

加权平均。一次迭代中高斯似然项计算涉及一次平方加

一次除法加一次指数运算,算作常数阶,下一步分母求和

并Softmax不涉及乘法操作,最后加权求和本质是对星座

点集的向量点积操作,因此复杂度为O(M),M 为星座点

数;第四部分执行的是残差特征的乘法操作,在每次迭代

中涉及的乘法次数为:4Nt。最后,MDNet
 

网络结构中各

模块所涉及的乘法运算次数可进行汇总,得出其所需的总
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乘法次数为:(8NrN2
t +4NrNt)+(4N2

t +QNt+M)K,

Q =6D +4,K 为 MDNet迭代次数。其算法复杂度为

O(NrN2
t)。不同检测算法复杂度具体如表2所示。分析

可得,传统检测算法 MMSE、ZF矩阵求逆操作带来了较大

的计算负担,其复杂度上升至O(N3
t),MDNet等基于深度

学习的检测算法不涉及矩阵求逆,相较于 MMSE降低了

一个数量级的复杂度并且 MDNet的计算复杂度随迭代次

数呈线性增长,表明该迭代结构在计算资源消耗方面具有

良好的可控性。进一步地,通过统计实际模型训练过程中

的FLOPs指标,可以更直观地评估不同网络的运算资源

需求。在16QAM 调制、64接收天线与32发射天线的环

境下,对DetNet、ScNet与 MDNet三种基于深度学习检测

网络的FLOPs进行对比分析,分别为50.58
 

GMac、2.38
 

GMac及202.56
 

GMac。尽管 MDNet在计算量上明显高

于其余两种方法,但得益于其可控的迭代结构设计与更强

的非线性特征提取能力,在高阶调制下误码性能的提升足

以弥补FLOPs方面开销过大的不足,从而在误码性能和

复杂度之间取得了平衡。

表2 检测算法复杂度对比

Table
 

2 Comparison
 

of
 

detection
 

algorithm
 

complexity
检测算法 复杂度

ZF 8N3
t +4N2

t(1+2Nr)+4NtNr

MMSE 8N3
t +4N2

t(1+2Nr)+4NtNr

DetNet 8NrN2
t +4NrNt +32N2

tK
ScNet 8NrN2

t +4NrNt +16N2
tK

MDNet (8NrN2
t +4NrNt)+(4N2

t +QNt +M)K

4 结  论

  本文针对高阶调制场景下现有大规模 MIMO检测算

法误码性能受限问题,基于投影梯度下降法近似求解 ML
提出了 MDNet检测网络。该网络设计了先激活函数后去

噪器的优化结构,通过去噪器的引入,有效抑制了估计误

差积累与信道噪声的影响,提升了检测的误码性能。并在

此基础上设计了适用于高阶调制的归一化多段激活函数,
解决了现有检测方法在高阶调制时检测性能受限的问题,
从而进一步提高了误码性能。实验仿真表明,与现有信号

检测方案进行对比时,所提出的 MDNet检测网络具有更

好的误码性能、更快的收敛速度和稳定性。所构建的检测

网络能够更有效地支持大规模
 

MIMO
 

系统中信号检测的

高效实现。未来将继续研究如何通过网络稀疏化和自注

意力机制等技术的应用降低算法复杂度,进一步提升算法

的实用性。
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