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Deep learning-based novel detection networks for massive MIMO systems

Kang Xiaofei Jing Yiyang Guo Hanyu

(School of Communication and Information Engineering,Xi'an University of Science and Technology,Xi'an 710600, China)

Abstract: To address the limitation of error performance in Massive MIMO detection algorithms under high-order modulation
scenarios» a novel detection network is proposed. This network is constructed based on a projected gradient descent framework
that approximates the maximum likelihood solution through an iterative structure, which is then implemented using a neural
network. In each network module, parameters are first learned through a neural network, followed by a nonlinear
transformation using a designed normalized multi-segement activation function to enhance the network’s mapping capability
under high-order modulation. Finally, a denoiser is employed to eliminate estimation errors and channel noise. Furthermore.
to tackle the issue of accuracy degradation with increased network depth, residual connections are introduced between network
modules. Simulation results show that when the number of transmitting and receiving antennas of the system is 64 X 32 and

*, and the bit error rate is

the signal-to-noise is 16 dB, the bit error rate of the proposed detection network is close to 10~
reduced by an order of magnitude compared with other detection algorithms, showing the bit error performance close to the
optimal detection algorithm, and has good robustness.
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Fig. 1 The iterative framework of MDNet
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