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摘 要:中国书法文化历史悠久,其中硬笔书法兼具艺术与实用价值。为应对电子设备普及造成的硬笔书写能力下

降问题
 

,本文提出一种融合字体风格、笔画顺序和笔力的多特征力反馈硬笔书法教学模式
 

。方法上,首先提出了一种

基于对比学习的Dense-CycleGAN模型,用于生成不同书写风格的硬笔书法字体库。其次,利用匈牙利算法对汉字的

笔画顺序进行标准化处理。最后,基于力反馈设备采集的书写数据,建立了笔画宽度到书写力度的映射模型。在五种

风格字体上的实验结果表明,本文提出模型在生成字体的结构相似性指数达到了0.587的均值,优于传统CycleGAN;
笔顺规范算法的整体相似度动态时间规整均值为0.044,余弦相似度均值为0.998,精度较高。用户评估实验中,书写

引导性评分为4.5/5,教学辅助性为4.1/5,验证了该模式的教学实用性与推广潜力。该书写模式真实再现了硬笔书

法书写过程,实现了兼顾字体风格、笔顺、笔力特征的硬笔书法教学,为硬笔书法的教育提供了一种新型融合策略。
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Abstract:
 

Chinese
 

calligraphy
 

has
 

a
 

long
 

and
 

rich
 

history,
 

with
 

hard-pen
 

calligraphy
 

bearing
 

both
 

artistic
 

and
 

practical
 

significance.
 

To
 

address
 

the
 

decline
 

in
 

hard-pen
 

handwriting
 

ability
 

caused
 

by
 

the
 

widespread
 

use
 

of
 

electronic
 

devices,
 

this
 

paper
 

proposes
 

a
 

multi-feature
 

hard-pen
 

calligraphy
 

teaching
 

mode
 

based
 

on
 

force
 

feedback,
 

which
 

integrates
 

font
 

style,
 

stroke
 

order,
 

and
 

writing
 

pressure.
 

Specifically,
 

a
 

Dense-CycleGAN
 

model
 

based
 

on
 

contrastive
 

learning
 

is
 

developed
 

to
 

generate
 

calligraphy
 

font
 

libraries
 

in
 

different
 

styles.
 

The
 

stroke
 

order
 

of
 

Chinese
 

characters
 

is
 

standardized
 

using
 

the
 

Hungarian
 

algorithm.
 

Furthermore,
 

a
 

mapping
 

model
 

from
 

stroke
 

width
 

to
 

writing
 

pressure
 

is
 

constructed
 

based
 

on
 

data
 

collected
 

via
 

force
 

feedback
 

devices.
 

Experimental
 

results
 

on
 

five
 

font
 

styles
 

show
 

that
 

the
 

proposed
 

model
 

achieves
 

an
 

average
 

Structural
 

Similarity
 

Index
 

Measure
 

(SSIM)
 

of
 

0.587
 

in
 

character
 

generation,
 

outperforming
 

the
 

traditional
 

CycleGAN.
 

The
 

stroke
 

order
 

standardization
 

yields
 

a
 

Dynamic
 

Time
 

Warping
 

(DTW)
 

score
 

of
 

0.044
 

and
 

an
 

average
 

cosine
 

similarity
 

of
 

0.998,
 

indicating
 

high
 

accuracy.
 

In
 

user
 

evaluation
 

experiments,
 

the
 

writing
 

guidance
 

and
 

teaching
 

assistance
 

received
 

scores
 

of
 

4.5/5
 

and
 

4.1/5,
 

respectively,
 

validating
 

the
 

practicality
 

and
 

applicability
 

of
 

the
 

proposed
 

mode.
 

This
 

writing
 

mode
 

faithfully
 

reproduces
 

the
 

hard-pen
 

calligraphy
 

process
 

and
 

enables
 

instruction
 

that
 

comprehensively
 

considers
 

font
 

style,
 

stroke
 

order,
 

and
 

writing
 

pressure,
 

offering
 

a
 

novel
 

integrated
 

strategy
 

for
 

calligraphy
 

education.
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0 引  言

  书法作为中华民族传统文化的精髓和灵魂,一直扮演

着非常重要的角色[1]。硬笔书法作为最普及的书写方式,
在其教育中,汉字的笔顺和笔力具有重要意义。标准的笔

顺有助于提高汉字的书写质量、美观度和识别率,可以在快

速书写时保证汉字不失真。笔力是影响书写效果的重要因

素之一[2]。适当的笔力可以使字形更加清晰、流畅,同时也

能体现出书写者的风格。然而,电子设备的普及却为传统

书法教学带来了新的挑战。
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随着现代科技的快速发展,机器人已在多个领域[3-5]显

示出其优势,并在书法的数字化传承与辅助教学方面展现

出应用潜力。目前,机器人书法研究主要集中在汉字图像

特征、字体风格和汉字书写过程3个方面。在汉字图像特

征层面[6],研究者们致力于从图像中提取笔画骨架、笔画宽

度及笔顺等信息。Wu等[7]通过图像处理与CNN结合的

方式识别笔画并生成轨迹,用以驱动书法机器人再现汉字

结构;Hsu等[8]则引入具备自学习能力的网络模型与反馈

机制,优化笔画轨迹与笔势控制,提升机器书写的美感与准

确性。对于字体风格特征的研究[9-10],则侧重于运用深度

学习模型学习不同书法家的风格,以生成具有特定艺术风

格的汉字。Kobayashi等[11]通过将卷积神经网络与循环神

经网络进行结合,从笔画图像中学习生成对应的三维运动

轨迹和书写力度,实现从静态图像对动态书写过程的还原;

Wang等[12]基于GAN模型提取书写动作参数,实现从静

态图像到动态书写过程的转换,提升对复杂字形的还原能

力。对于汉字书写过程的研究[13],重点在于书写动作的精

确复现与书写技能的传递,例如通过力反馈技术模拟毛笔

书写时的复杂动态力感,进行书写演示与虚拟教学。Teo
等[14]提出结合视觉与力反馈的虚拟教学系统,通过六自由

度触觉接口实现高精度书写引导与量化评估,从而辅助用

户提升书写技能。然而,现有研究仅侧重于上述某一特定

方面,将字体风格、精确笔顺规范以及硬笔书写中的笔力变

化进行全面融合的综合性研究则更为少见。
力反馈技术作为虚拟现实技术的一种,是一种先进的

人机交互技术[15],可以为书法教学提供一个良好的交互平

台。将硬笔书法与力反馈设备相结合,从而实现既有规范

笔顺又有书写压力的硬笔书法教学方法。本文基于力反馈

设备,提出一种融合了字体风格、笔画顺序和笔力的多特征

力反馈硬笔书法书写模式。本文主要贡献如下:

1)
 

基于风格迁移的思想,对CycleGAN进行改进,提

出基于对比学习的Dense-CycleGAN模型,对多风格硬笔

书法家汉字字库进行扩充。

2)
 

对生成的硬笔书法汉字进行笔顺规范,获得不同风

格汉字的正确笔顺以及按笔顺书写的汉字笔画。

3)
 

基于力反馈装置,模拟书写压力与笔画宽度之间的

关系,模拟书写不同宽度笔画时的书写压力。
此外,为验证该书写模式在实际教学场景中的可用性,

本文进一步设计并实施了用户体验评估实验,对该书写模

式的教学效果与交互体验进行了验证与评价。本文的研究

是在前期工作[16]的基础上的进一步深入探讨与完善。

1 方法设计

  本章提出一种多特征融合下的力反馈硬笔书法书写模

式,依托于力反馈设备,融合了字体风格、笔画顺序与笔力

3种特征,其架构如图1所示。该书写模式由3个核心模

块组成:风格生成模块、笔顺规范模块与笔力模拟模块,分
别对应于字体风格迁移、笔顺结构提取与力度信息还原3
项主要任务。具体而言,首先通过Dense-CycleGAN对楷

体字图像进行风格迁移,生成具有不同书法家风格的标准

化字形图像,为后续笔顺提取和力度模拟提供多样的标准

化输入源。随后,利用公开数据集提供的笔顺数据,通过匈

牙利算法对生成字形进行笔顺骨架匹配与笔画宽度提取。
最后,在笔顺还原出的笔画宽度基础上,结合力反馈设备中

采集的力-坐标数据,构建笔力模拟模型,实现从视觉特征

到书写力度的映射。3个模块经过串行与耦合,最终协同

作用于力反馈书写平台,实现兼顾风格还原、笔顺规范与笔

力真实的协同书写模式。
该书写模式通过集成汉字书写的3个核心要素,提供了更

为完整的书写体验,避免了传统方法仅拘泥于某一方面的局限

性。多风格与规范笔画确保了书写的丰富度与准确性;力触觉

的引入则进一步丰富了交互维度,还原了真实书写体验。

图1 书写模式架构图

Fig.1 Architecture
 

of
 

the
 

writing
 

mode
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1.1 风格迁移

  1)模型概述

汉字迁移的任务旨在保证汉字内容不变的情况下,对
汉字的字形作目标风格的转换。本文结合对比学习[17]、

CycleGAN[18]与DenseNet[19],提出基于对比学习的Dense-
CycleGAN模型,通过在非成对硬笔书法图像数据集上进

行实验,可以生成目标书法风格图像中不存在的书法图

像,从而实现目标风格书法图像的扩充。
模型包含一个生成器G 和一个鉴别器D ,模型总体架

构如图2所示。生成器G 是一个基于9个DenseNet块的

编码器解码器架构,包含编码器Genc 和解码器Gdec 。在计

算对比损失时,采用Genc 和两层MLP 的结构对图像进行

特征提取。在计算对抗性损失时,将生成图像G(X)和目

标图像Y 输入鉴别器D 。在计算身份一致性损失时,将生

成图像G(X)与原始图像X 输入鉴别器D 。
生成器G 的编码器解码器网络结构如表1所示,编码

器由1个卷积层、2个下采样层和5个Dense
 

block组成,

  

解码器由4个Dense
 

block、2个上采样层以及1个卷积层

组成。其中编码器也用于原始图像X 与生成图像G(X)
的特征提取。

图2 模型架构图

Fig.2 Architecture
 

of
 

the
 

model

表1 生成器的编码器解码器网络结构

Table
 

1 Encoder-decoder
 

network
 

structure
 

for
 

generators
组件 输入➝输出 每层网络结构

编

码

器

Conv
 

layer (3,256,256)→(64,256,256) ReflectionPad,Conv(3,64,7,1),IN,ReLU
Downsampling1 (64,256,256)→(128,258,258) Conv(64,128,3,1),IN,ReLU,ReflectionPad
Downsampling2 (128,258,258)→(256,130,130) Conv(128,256,3,1),IN,ReLU,ReflectionPad
Dense

 

block
 

1 (256,130,130)→(256,64,64) BN,Conv(256,1024,1,1),BN,Conv(1024,256,3,1),AvgPool1d
Dense

 

block
 

2 (256,64,64)→(256,64,64) BN,Conv(256,1024,1,1),BN,Conv(1024,256,3,1),AvgPool1d
Dense

 

block
 

3 (256,64,64)→(256,64,64) BN,Conv(256,1024,1,1),BN,Conv(1024,256,3,1),AvgPool1d
Dense

 

block
 

4 (256,64,64)→(256,64,64) BN,Conv(256,1024,1,1),BN,Conv(1024,256,3,1),AvgPool1d
Dense

 

block
 

5 (256,64,64)→(256,64,64) BN,Conv(256,1024,1,1),BN,Conv(1024,256,3,1),AvgPool1d

解

码

器

Dense
 

block
 

6 (256,64,64)→(256,64,64) BN,Conv(256,1024,1,1),BN,Conv(1024,256,3,1),AvgPool1d
Dense

 

block
 

7 (256,64,64)→(256,64,64) BN,Conv(256,1024,1,1),BN,Conv(1024,256,3,1),AvgPool1d
Dense

 

block
 

8 (256,64,64)→(256,64,64) BN,Conv(256,1024,1,1),BN,Conv(1024,256,3,1),AvgPool1d
Dense

 

block
 

9 (256,64,64)→(256,64,64) BN,Conv(256,1024,1,1),BN,Conv(1024,256,3,1),AvgPool1d
Upsampling1 (256,64,64)→(128,128,128) ReflectionPad,Conv(256,128,3,1),IN,ReLU
Upsampling2 (128,128,128)→(64,256,256) ReflectionPad,Conv(128,64,3,1),IN,ReLU
Conv

 

layer (64,256,256)→(3,256,256) ReflectionPad,Conv(64,3,7,1),Tanh

  模 型 的 鉴 别 器 D 使 用 了 与 CycleGAN 相 同 的

PatchGAN结构[20],鉴别器的具体结构如表2所示。

2)数据集

模型使用的数据集为楷体GB2312、丁谦楷体、司马彦

楷体、黄海平楷体、顾建平隶书、吴玉生行书6种不同风格

的书法图像,其中原始字符图像为楷体GB2312,其他5种

风格汉字为需要扩充的风格字体图像。字体数据集从互

联网收集。6种字体图像的数据集大小分别为6
 

763、

6
 

574、3
 

674、2
 

499、6
 

397和6
 

576。实验中,按照6∶4划

分为训练集和测试集。将收集到的图像处理为256×256×
3大小的PNG图像。训练时进行两种数据增强操作,第1
种是将输入图像调整为286×286大小,随机裁剪为256×
256大小,第2种是左右翻转图像。

3)实验设置

模型训练使用了基于Torch框架的开源深度学习框架

PyTorch,运行环境采用Linux系统,在GeForce
 

RTX
 

2080Ti
 

GPU上训练。由于内存限制,将batch大小设置为1,epoch设置

为100,epoch_decay设置为100,学习率初始值设置为0.000
 

2。
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4)训练流程

模型训练包括3个部分,对抗损失、对比损失以及身

份一致性损失。
对于对抗损失来说,首先原始图像X 经过生成器G ,

得到生成图像G(X),然后将生成图像G(X)和目标图像

Y 输入鉴别器D ,利用对抗性损失LGAN 来约束生成图像

G(X)呈现目标图像Y 的外观风格,如果loss变大,就“惩
罚”鉴别器D ,使模型调整参数,降低损失。

表2 鉴别器结构

Table
 

2 Structure
 

of
 

the
 

discriminator
组件 输入→输出 每层网络结构

Downsampling1 (3,256,256)→(64,128,128) Conv(3,64,4,1),BN,LeakyReLU
Downsampling2 (64,128,128)→(128,64,64) Conv(64,128,4,1),BN,LeakyReLU
Downsampling3 (128,64,64)→(256,32,32) Conv(128,256,4,1),BN,LeakyReLU,

Downsampling4 (256,32,32)→(512,31,31) Conv(256,512,4,1),BN,LeakyReLU,

Downsampling5 (512,31,31)→(1,30,30) Conv(512,1,4,1)

  对抗性损失定义为:

LGAN(D,G)=Ey~Y logD y    +
Ex~X log1-D G x        (1)

其中,G 试图生成和目标图像Y 的外观风格相似的图

像G(X),而D 旨在区分生成图像G(X)和真实图像Y。
对于对比损失来说,参考CUT[21]定义正负样本的方

式,将一张图片的不同图像块进行拆分,正负样本均来自

同一张图片。使用Genc 和两层MLP 网络对原始图像X 和

生成图像G(X)中对应的图像块特征进行提取,如图2所

示。将原始图像X 中提取的特征向量表示为v={v0,v1,

v2,v3},其中v0 表示与生成图像中选定图像块位置对应的

特征向量,其余特征向量{v1,v2,v3}表示来自不同空间位

置的特征向量。生成图像G(X)中提取的对应特征向量表

示为w。其中,特征向量w 为原样本,对应位置的特征向

量v0 作为正样本,记为v+,其余特征向量{v1,v2,v3}作为

负样本,记为v-。之后使用对比损失来最小化原样本与正

样本之间的距离,最大化原样本与负样本之间的距离,目
的是学习到原样本与正样本之间的共性,如字体的结构,
同时区分原样本与负样本对之间的差异。对比损失定

义为:

LInfoNCE w,v+,v-  =

-log
expsim w,v+  /τ  

expsim w,v+  /τ  +∑
N

n=1
exp(sim w,v-

n  /τ)  
(2)

其中,τ表示用于缩放正负样本相似度差异的温度参

数,参照 MoCo[22]的设置,使用0.07作为默认值。随机对

256个位置进行采样,负样本数量N 设定为默认值255。
将原始图像X 和生成图像G(X)通过Genc 每一层输出

的特征向量分别编码为vl=Hl(x)和wl=Hl(G(x)),
其中l∈ {1,2,…,L},代表Genc 的第l层。则原样本为

wl,正样本为v+
l ,负样本为v-

l 。则多层对比损失用公式

表示为:

LPatchNCE(G,H)=Ex~X∑
L

l=1
LInfoNCE wl,v+

l,v-
l  (3)

最后,使用身份一致性损失LIdentity ,使得生成图像G(X)
与原始图像X 保持色调上的一致性,损失函数表示为:

LIdentity(G)=Ex~X ‖G x  -x‖1  (4)
设定λidt =10,整个网络的损失函数定义为:

L(G,D,H) = LGAN(D,G)+ LPatchNCE(G,H)+
λidtLIdentity(G) (5)

1.2 笔顺规范

  1)汉字表示方式

为了使用力反馈设备还原硬笔书法书写的过程,需要

解决汉字的书写顺序以及笔画形状问题。首先采用Z-S图

像细化算法,将汉字细化为单像素宽的骨架线条。其次,
参照 Ha等[23]和Graves[24]将图像表示为一系列点组成的

序列向量的方式,将汉字表示为一系列特征点的集合。汉

字书写过程中需要汉字书写的位置坐标信息,笔顺信息以

及笔画宽度信息,因此,一个含有N 笔笔画的汉字就可以

表示为:

C = {C1,C2,…,CN} (6)
其中,C 代表一个汉字,Cn 表示一个汉字的第n 笔笔

画,N 表示一个汉字的笔画总数。汉字的第n 笔笔画可以

表示为:

Cn ={xi,yi,wi},n=1,2,3,…,N,i=1,2,…,L (7)
其中,(xi,yi)表示第i个特征点的坐标参数,wi 表

示第i个特征点的笔画宽度参数,L 表示第n 笔笔画的特

征点总数。

2)汉字预处理

Make
 

Me
 

a
 

Hanzi是一个包含9
 

000种常见楷体汉字

的庞大笔顺数据库,提供了详细的笔画矢量图形、汉字偏

旁信息和按照正确笔顺信息排列的中位线数据等,Make
 

Me
 

a
 

Hanzi提供的笔顺中位线数据如图3所示。
笔顺规范算法,结合汉字骨架坐标数据和 Make

 

Me
 

a
 

Hanzi的笔顺中位线数据,进行汉字正确笔顺的规范。称
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图3 Make
 

Me
 

a
 

Hanzi提供的笔顺中位线数据

Fig.3 Ordered
 

stroke
 

midline
 

provided
 

by
 

Make
 

Me
 

a
 

Hanzi

汉字骨架坐标数据为原始笔画,Make
 

Me
 

a
 

Hanzi中的中

位线数据为目标笔画。为了更加精确地将笔顺中位线数

据与原始汉字骨架坐标匹配,对 Make
 

Me
 

a
 

Hanzi数据集

中的笔顺中位线数据进行关键点坐标之间的均匀采样。
并对原始笔画以及目标笔画进行归一化处理以及非刚性

配准,减少匹配算法所使用的运算时间。

3)汉字笔顺规范

对于汉字笔顺规范问题来说,可以将笔画顺序匹配问

题视为二分图的最大带权匹配问题,采用匈牙利算法进行

笔顺规范。首先,建立二分图,将原始笔画点集表示为

Xm×2= x1,x2,x3,…,xm  ,目标笔画点集表示为Yn×2=
y1,y2,y3,…,yn  ,其中,m >n。匹配完成的笔画点集

数量为n,表示为生成笔画Tn×2 = t1,t2,t3,…,tn  。然

后,基于X 和Y 点集之间的距离构建代价矩阵:

Dn×m =
d1,1 … d1,m

︙ ⋱ ︙

dn,0 … dn,m

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 (8)

Dn×m 表示原始笔画点集X 和目标点集Y 之间的匹配

关系权重。之后进行匈牙利问题求解,增加虚构的m -n
行,对应的代价di,j =0,将代价矩阵 Dn×m 转换为方阵

Dl×m,其中l=m 。对于笔顺匹配问题,目标是将目标点

集Y 的笔画点yj 唯一匹配原始点集X 中的点xi,且使得

整体代价最小。此时,笔顺匹配问题就转化为代价矩阵的

行列变换问题,通过一系列变化,使得矩阵中包含所有1
的行数或者列数等于最终匹配的点集数量。匹配损失函

数可以用公式表示为:

LHungarian =min∑
l

i=1
∑

m

j=1
Lmatch xi,yj  ×ωij (9)

其中,Lmatch xi,yj  是原始笔画点xi 与目标笔画点

yj 之间的成对匹配代价,ωij 表示是否分配该目标笔画点,
若分配则为0,否则,值为1。笔顺匹配的目标是最小化损

失函数LHungarian ,并且满足唯一匹配的约束条件。约束条

件用公式表示为:

∑
m

j=1
ωij =1,i=1,2,3,…,l (10)

∑
l

i=1
ωij =1,j=1,2,3,…,m (11)

∑
l

i=1
∑

m

j=1
ωij =m (12)

式(10)确保每个原始骨架点xi 只匹配一个目标骨架

点yj ,式 (11)确保每个目标骨架点yj 只分配给一个原始

点xi,式 (12)确保每个目标骨架点yj 都必须被分配。
最后,剔除虚构的m-n行,便得到了目标笔画点集Y

经过匈牙利算法匹配后的结果。按照目标笔画点集Y 的

正确笔画顺序,依次将yj 匹配到的xi 加入点集T 中,并按

照点集Y 的笔顺分割T 中每一笔的笔画。由于目标笔画

与原始笔画在点数的数量上存在差异,以及非刚性配准带

来的近邻匹配误差,匈牙利算法在笔画点匹配过程中可能

出现部分点超出当前笔画范围的情况。因此,经过匈牙利

算法匹配处理后,需要对匹配后的笔顺进行进一步优化,
并设置距离阈值进行过滤处理。

笔顺规范后的汉字骨架只显示了笔画的书写方向信

息,为了还原汉字书写的过程,需要对汉字的笔画宽度信

息进行计算。采用计算笔画轮廓最大内切圆的算法[25],
沿着规 范 后 的 汉 字 骨 架 点 计 算 每 个 骨 架 点 处 笔 画 的

宽度。

1.3 笔力还原模拟

  在书写时,书写力度的大小影响笔下压的深度,进而

决定汉字笔画的粗细。同时,笔画粗细的变化还反映了笔

垂直方向的上下位移和笔力大小的变化。为了更加真实

地还原硬笔书写过程,首先,对力反馈设备中力度大小与z
轴坐标的关系进行建模分析,其次,结合z 轴坐标和笔画

宽度的关系,对笔画宽度和书写力度之间的关系进行建

模,最后,可以成功地模拟出力反馈设备中不同笔画宽度

下的书写力度。

1)力反馈设备介绍

书写实验中使用的力反馈设备为 Geomagic
 

Touch,

Geomagic
 

Touch设备如图4所示。该设备具有较小的占

地面积和较轻的重量,同时具有较高的运动精度和灵敏

度,适用于硬笔书法研究中的书写模拟。

2)数据采集

在力反馈设备中,可以通过内置力传感器对书写时的

力度大 小 进 行 测 量 记 录,规 定 汉 字 书 写 平 面 范 围 为

-1.999~-2.000
 

cm。-1.999
 

cm为触控笔刚接触书写

平面时的垂直方向坐标,-2.000
 

cm表示触控笔书写最大

笔画宽度时的垂直方向坐标。在数据采集过程中,首先对

触控笔刚触碰到书写平面的z 轴坐标位置进行力度的归

零处理。随后,使用力反馈设备进行多次书写,记录书写

平面范围内的力度大小和z 轴坐标数据。最后,将这些数
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据分为训练集和测试集,其中训练集和测试集的数量均为

50个。力与z轴坐标关系图如图5所示。

图4 Geomagic
 

Touch设备

Fig.4 Geomagic
 

Touch
 

device

图5 力与z轴坐标关系坐标图

Fig.5 Writing
 

pressure
 

versus
 

z-axis
 

coordinates

  3)多项式拟合

为了避免由于数值过小而导致的精度缺失误差,对力

度大小进行了扩大10倍的处理,同时将z 轴坐标减去书

写平面高度-2.000,并扩大10
 

000倍,处理后的横坐标与

纵坐标分布在0~10范围内。接着,采用多阶多项式对训

练集数据中力与z 轴的坐标关系进行拟合。拟合函数后

的图像如图6所示。

图6 1~8阶函数拟合训练集数据

Fig.6 Results
 

of
 

different
 

high-degree
 

polynomial
 

fits

将拟合多项式表示为:

F =∑
n

i=0
aizi (13)

其中,3~8阶多项式的拟合参数如表3所示。

表3 3~8阶多项式拟合参数

Table
 

3 Fitting
 

parameters
 

for
 

the
 

third
 

to
 

eighth
 

degree
 

polynomials

参数
多项式取值

3阶 4阶 5阶 6阶 7阶 8阶

a0 6.021 6.384 6.744 6.998 6.946 6.886
a1 -1.989 -2.965 -4.375 -5.741 -5.347 -4.73
a2 0.312

 

2 0.786 1.887 3.445 2.813 1.515
a3 -0.017

 

63 -0.093
 

64 -0.401
 

4 -1.066 -0.681
 

2 0.364
 

8
a4 0 0.003

 

85 0.039
 

13 0.168
 

2 0.056
 

77 -0.356
 

4
a5 0 0 -0.001

 

418 -0.013 0.003
 

535 0.092
 

07
a6 0 0 0 0.000

 

389
 

7 -0.000
 

824
 

4 -0.011
 

33
a7 0 0 0 0 0.000

 

034
 

986 0.000
 

683
 

9
a8 0 0 0 0 0 -0.000

 

016
 

28

2 实验结果

2.1 风格迁移

  1)模型生成示例

模型生成的5种不同字体的汉字如图7所示。第1行

为原始风格图像楷体GB2312,之后的每2行,第1行显示

目标风格汉字的真实图像,第2行显示模型生成的风格汉

字。可以看出,对于楷体风格汉字生成效果良好,对于隶

书风格汉字,由于字形结构和原始楷体图像差异较大,生

成效果欠佳,但仍保留了字形结构,使得自行清晰可辨,对
于行书风格汉字,生成图像连笔效果欠佳。总体来说,模
型生成的汉字图像与原始书法图像风格相似度很高,且结

构完整,生成效果较好。

2)实验结果分析

以黄海平楷体为例,图8为CycleGAN,以及本文提出

的基于对比学习的 Dense-CycleGAN模型的生成图像对

比,可以看出基于对比学习的Dense-CycleGAN模型强化

了汉字的细节部分,并且降低了笔画缺失现象,生成了质
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图7 模型生成汉字示例

Fig.7 Examples
 

of
 

generated
 

Chinese
 

characters

量更高的汉字。基于对比损失,可以在非配对数据集上关

注汉字的结构信息来保留汉字原本内容,实现单向风格迁

移,相较于CycleGAN模型的双向约束更加直接,能够更

好地保留原始图像中汉字的结构信息,减少了笔画断连现

象。基于DenseNet的生成器特征提取能力更强,生成的

汉字笔画结构更加完整,更好地保留了汉字内容细节,减
少了笔画粘连,细节轮廓更加完整。

图8 汉字生成结果对比

Fig.8 Comparison
 

of
 

generated
 

Chinese
 

characters

  为进一步评估本文提出模型的性能,采用结构相似性

指数(structure
 

similarity
 

index
 

measure,SSIM)与均方误

差(mean
 

squared
 

error,MSE)来评估生成汉字图像的质量

以及生成图像与真实图像的相似度。评价结果如表4所

示。从实验结果来看,本文提出的模型在SSIM以及 MSE
图像相似性指标上表现优于CycleGAN模型,生成的多风

格汉字图片为后续笔顺提取和力度模拟提供多样的标准

化输入源。SSIM反映了模型可以更好地保留汉字的结构

信息,MSE反映了本文提出的模型生成的图像与目标图像

更为相似,证明 了 本 文 提 出 的 基 于 对 比 学 习 的 Dense-
CycleGAN模型的有效性。

2.2 笔顺规范

  1)笔顺规范结果

匈牙利算法规范后的汉字笔顺按照正确的笔画顺序

排列,且具有正确的笔画数,采用的笔画宽度提取方法也

可以较为准确地还原汉字的笔画宽度,不同风格汉字的笔

顺规范结果如表5所示。

表4 汉字生成结果评价

Table
 

4 Evaluation
 

of
 

generated
 

Chinese
 

character

目标字体
CycleGAN 本文提出模型

SSIM MSE SSIM MSE
丁谦楷体 0.572

 

1 20.12 0.587
 

1 19.44
司马彦楷体 0.607

 

4 19.08 0.620
 

3 18.03
黄海平楷体 0.617

 

6 18.34 0.635
 

6 17.96
顾建平隶书 0.503

 

2 23.65 0.561
 

5 21.43
吴玉生行书 0.494

 

7 24.02 0.528
 

9 23.51

2)笔顺相似度评价

为了进一步验证所提出笔顺规范算法的有效性,使用

基于动态时间归整(dynamic
 

time
 

warping,DTW)算法和

  

表5 笔顺规范结果

Table
 

5 Results
 

of
 

stroke
 

order
 

standardization
汉字风格 原始图像 细化骨架 规范笔顺 还原笔画宽度后

黄海平楷体

丁谦楷体

司马彦楷体

顾建平隶书

吴玉生行书
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余弦相似度算法的笔顺相似度评价算法来验证生成的笔

顺结果。
由于不同字符的序列长度是不同的,DTW 代价是计

算每个匹配点对之间的距离之和,因此,需要将DTW 计算

结果除以序列长度,以消除不同长度的影响。DTW 算法

可以用公式表示为:

nDTW Y,T  =
DTW Y,T  

|Y| xmax-xmin  2+(ymax-ymin)2
(14)

其中,|Y|代表目标笔顺Y 的序列长度,xmax 和xmin

为Y 中横坐标最大值和最小值,ymax 和ymin 为Y 纵坐标中

最大值与最小值。
在笔顺相似度问题中,通过计算目标笔顺序列Y 和生

成笔顺序列T 不同时刻的余弦相似度,来评估目标笔顺序

列Y 和生成笔顺序列T 每一笔的笔画相对位置差异以及

笔顺方向差异。由于Y 和T 序列点数量不同,因此需要首

先建立DTW匹配建立对齐关系,之后计算余弦相似度,用
公式表示为:

cosX,T  =
Y·T

‖Y‖‖T‖ =

∑
n

i=1
Yi×Ti

∑
n

i=1
Yi  2 × ∑

n

i=1
Ti  2

(15)

分别从5种书法家字库的笔顺生成结果中随机选取

60个汉字,共300个汉字进行笔顺相似度评价,得到的相

似度结果如表6所示。

表6 笔顺相似度评价

Table
 

6 Stroke
 

order
 

similarity
 

evaluation
汉字风格 DTW 余弦相似度

黄海平 0.042
 

32 0.997
 

84
丁谦 0.035

 

41 0.998
 

21
司马彦 0.036

 

51 0.998
 

71
顾建平 0.062

 

99 0.995
 

52
吴玉生 0.043

 

98 0.998
 

14

可见,不同风格汉字笔顺的整体序列相似度DTW 平

均为0.044
 

242,最高的相似度在0.04以下,趋近于0。余

弦相似度最大为0.998
 

71,且相似度均在0.995以上,趋近

于1。证明规范后的汉字笔顺每一笔的笔顺方向几乎全部

是正确的,可以证明所提出的笔顺规范方法是可靠的。

2.3 笔力模拟

  为了验证所提出拟合函数的泛化性,将在训练集上的

拟合结果在测试集数据上进行函数拟合测试,测试集上的

拟合函数图像如图9所示。
使用决定系数R2 和 MSE来评估拟合函数和真实值

之间的匹配程度。R2 的计算可以用公式表示为:

图9 训练集拟合结果在测试集上的表现

Fig.9 Performance
 

of
 

training
 

set
 

fitting
 

results
 

on
 

test
 

set

R2=
∑

n

i=1

(ŷi-y-)2

∑
n

i=1

(yi-y-)2
(16)

其中,y 表示真实值,y- 表示真实值的均值,函数拟合

得到的数据为ŷ。在训练集和测试集上分别拟合的R2 和

MSE结果如表7所示。

表7 多项式拟合结果评价

Table
 

7 Evaluation
 

of
 

polynomial
 

fit
 

results

多项式
训练集 测试集

R2 MSE R2 MSE
一阶多项式 0.849

 

78 0.440
 

40 0.786
 

17 0.487
 

23
二阶多项式 0.906

 

55 0.273
 

97 0.839
 

36 0.281
 

30
三阶多项式 0.943

 

34 0.166
 

11 0.872
 

13 0.177
 

78
四阶多项式 0.959

 

59 0.118
 

48 0.888
 

23 0.169
 

97
五阶多项式 0.977

 

14 0.067
 

03 0.904
 

50 0.125
 

67
六阶多项式 0.984

 

50 0.045
 

45 0.910
 

85 0.092
 

79
七阶多项式 0.984

 

86 0.045
 

39 0.911
 

10 0.088
 

70
八阶多项式 0.984

 

91 0.045
 

23 0.911
 

16 0.087
 

18

根据表中的数据分析,当多项式的阶数>6时,训练集

和测试集的R2 和 MSE的变化趋势变得缓慢,并表现出稳

定的特征。因此,最终采用六阶多项式表示该函数关系。
最终得到的拟合公式为:

F =0.000
 

389
 

7z6-0.013z5+0.168
 

2z4-1.066z3+
3.445z2-5.741z+6.998 (17)

在研究机器人书法垂直方向坐标时,Teo等[14]将笔画

宽度的变化近似地替代了书写时笔垂直方向坐标的变化。
在他们研究的基础上,将笔画宽度信息与力反馈设备的z
轴坐标进行转换,当汉字的笔画宽度为wi 时,z 轴坐标可

以用公式表示为:

zi =zmax-[(zmax-zmin)wi/w] (18)
其中,zmax 表示触控笔刚接触书写平面时的垂直方向

坐标,zmin 表示触控笔书写最大笔画宽度时的垂直方向坐

标,w 表示汉字的最大书写笔画宽度。本实验所使用的力
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反馈设备中,zmax=-1.999
 

cm,zmin=-2.000
 

cm,w=
1.5

 

cm。
结合式(17)与(18),可以得到笔画宽度与书写力度之

间的关系。因此,当汉字的笔画宽度为wi 时,力反馈设备

的书写力度Fi 可以用公式表示为:

Fi =∑
n

i=0
ai{zmax-[(zmax-zmin)wi/w]}i (19)

由此,可以通过汉字的不同书写笔画宽度来模拟力反

馈硬笔书法教学时的力度大小。

3 力反馈书写平台

  为实现多特征融合的硬笔书法教学模式,本章设计并

搭建了基于力反馈设备Gemomagic
 

Touch的书写平台作

为载体,融合笔顺、风格与笔力模拟功能。通过运动学建

模实现书写引导,并结合笔画宽度与力度关系,通过人机

交互的方式,引导用户进行标准化、结构化的书写练习。
为验证其实用性,进一步设计了用户体验实验,对书写模

式的教学效果和交互性能进行主观评价。

3.1 运动学建模

  采用矩阵变换法来对力反馈设备进行逆运动学求解。
首先需要确定关节坐标系,将与基座相连固定不动的连杆

称为连杆0,将与连杆0固连的坐标系称为坐标系{0},并
以坐标系{0}作为参考坐标系,描述其他连杆的位置和方

位,类似地,末端坐标系称为坐标系{n},与连杆n 固连。

Geomagic
 

Touch的坐标系如图10所示。

图10 Geomagic
 

Touch的坐标系

Fig.10 Coordinate
 

system
 

of
 

Geomagic
 

Touch

由于Geomagic
 

Touch的输出自由度为前3个关节的

自由度,因此只需要求解出θ1,θ2,θ3,就可以得到力反馈关

节的运动轨迹。通过坐标系和矩阵变换法建立各个连杆

之间的齐次变换矩阵,可以得到正运动学公式为:

0
ET=01Tθ1  1

2Tθ2  2
3Tθ3  3

ET=

n11 n12 n13 px

n21 n22 n23 py

n31 n32 n33 pz

0 0 0 1

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁

(20)
其中,θi代表力反馈设备的各个关节角,m

nT 代表坐标

系{n}相对于坐标系{m}的齐次变换矩阵,末端执行器位

姿为px,py,pz ,即汉字书写参数。由于l3、l4、px、py、pz

为已知参数,通过矩阵的逆运算便可以求解出力反馈的关

节角θ1,θ2,θ3,由此就通过汉字书写参数得到了力反馈关

节的运动轨迹。

3.2 硬笔书法教学平台

  硬笔书法教学场景如图11所示,教学过程中,用户可

以手持Geomagic
 

Touch力反馈设备提供的触控笔,点击

触控笔上方按钮,由触控笔带动用户进行书写练习。

图11 力反馈硬笔书法教学场景

Fig.11 Force
 

feedback
 

hard-pen
 

calligraphy
 

teaching

3.3 书写模式用户体验评估实验

  为了进一步验证本文所提出的力反馈硬笔书法书写

模式在实际使用中的实用性与有效性,本节设计并实施了

一项用户体验评估实验。由于书法书写活动本身具有较

强的主观性与交互性,缺乏统一的客观指标。因此,本实

验旨在从用户角度出发,评估该书写模式在不同方面的表

现,为后续方法优化与应用推广提供参考依据。
1)实验流程与内容

本实验共邀请了
 

10
 

名高校学生参与,所有参与者均

具有日常汉字书写能力,部分具备硬笔书法基础,使用本

章开发的硬笔书法教学平台作为交互终端。
(1)

 

书写任务设置:每位被试分别完成两个阶段的书

写任务,对应以下两种条件:
无平台组:常规书写方式,不借助力反馈平台;
平台引导组:使用力反馈设备,根据平台提供的笔顺

与力度引导完成书写。
每位参与者分别在两种条件下各书写8个字形复杂

度适中,涵盖 常 见 笔 画 结 构 的 汉 字:“促”、“寸”、“杉”、
“伙”、“乓”、“仍”、“邢”以及“央”。

(2)
 

主观体验评估:完成书写任务后,每位被试填写一

份
 

5
 

分制的问卷,对平台的体验效果从表8中的5个维度

进行主观评分。

2)实验结果分析

表9展示了5个维度下的用户体验评价得分。大部分

受试者都认为平台能够在书写过程中提供明确的笔顺指

导和清晰的笔力反馈,且整体满意度较高,用户普遍反映

该书写模式体验真实,书写反馈明显。其中,“书写引导

·811·
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性”获得了4.3分,证实了笔顺规范模块的实用性,用户普

遍反映系统能够清晰地引导正确的书写顺序;“教学辅助

性”获得4.1分,表明平台在提升书写质量方面具有积极

作用,体现了多特征集成的综合优势。同时,受限于力反

馈设备自身硬件参数,有部分被试对“书写舒适度”提出改

进建议,主要集中在书写过程中设备动作衔接自然度上,
为后续在动作衔接与自然人机交互方面的改进提供了思

路与方向。

表8 用户体验评价维度

Table
 

8 User
 

experience
 

evaluation
 

dimensions

评价维度 评分描述(1~5分)
书写引导性 平台是否能清晰引导笔顺书写

力反馈清晰度 笔力反馈是否真实可感,便于掌握书写力度

书写舒适度 使用过程中是否自然、顺畅、无阻力感

教学辅助性 是否能帮助提升汉字书写技能与笔顺规范性

整体满意度 对书写模式和平台交互体验的总体评价

表9 用户体验评价结果

Table
 

9 User
 

experience
 

evaluation
 

result

评价维度 平均得分(满分5分)
书写引导性 4.5

力反馈清晰度 3.7
书写舒适度 3.4
教学辅助性 4.1
整体满意度 4.3

4 结  论

  本文提出了一种多特征融合下的力反馈硬笔书法书

写模式。分别研究了基于对比学习的Dense-CycleGAN风

格迁移模型、基于匈牙利算法的笔顺规范方法以及还原笔

画力度的方法。该书写模式在保持书写结构完整性的同

时,还原了真实的书写压力,为硬笔书法的数字化教学提

供了新的实现路径。在此基础上,本文还通过用户体验评

估实验,从多个维度对所提模式进行了主观验证。实验结

果表明,该模式具备良好的教学辅助效果与实际可用性,
具有较高的推广应用价值。
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