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BEYV lane detection based on causal intervention

Li Ruihao  Yu Hongfei

(College of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113005, China)

Abstract: Aiming at the feature ambiguity and misdetection problems in bird's eye view lane line detection caused by
environmental disturbances such as sudden changes in illumination and extreme weather, this paper proposes a causal
intervention-based BEV lane detection framework. First, to enhance the representation of features during BEV spatial
transformation, composite positional encoding is designed and fused to front view features to maintain spatial continuity
and consistency. Second. the causal intervention module is constructed after acquiring the BEV features. The causal
intervention module aims to explicitly decouple the lane line features from the environmental disturbances by generating
counterfactual features to improve the stability of the model in extreme environments. Finally. the dynamic calibration
of multi-scale features and interference suppression is accomplished by introducing the feature fusion module, and the
global attention mechanism is utilized to achieve the enhancement of BEV features. The experimental results show that
in the three subsets of the Apollo dataset, the F1 values are improved by 0. 8%, 1% . and 3% compared to the model
with the 2nd performance, and the F1 values are also optimal in the challenging scenarios within the Openlane dataset
that contain extreme weather, night, and intersections. The explicit decoupling of lane line features and environmental
disturbances is successfully realized, providing a highly robust solution for autonomous driving perception in complex
environments.
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Table 3 Module efficacy in complex scenes

Method Extreme weather Night
Base 53.4 53.4

Base with CIM 57.5 55.8
Base with CPE 56. 1 54.9
Base with TFAM 54.0 53.7
Base with GAM 54.3 54.2

2.3 HEEXHER

TG IR AR R AR, AR SCFE Apollo i 4R AN
OpenLane 45 4 1 JEAT 1 5256 3 5 10 A B9 52 30 45 R 017
It %5, f1 $§ PersFormer” . CLGO"™!, CurveFormer™ .
BEV-LaneDet"""” \LaneCPP""" %5, 5 bR J5 3B, A X

J5 1 AR A = 22 () HEAT 2 JE 2 R, I 300 T ik e g
K2 BEV WAL e A, X5 F B3R vk, A S0
BEHAE TSI AR T LG, XX R R TS
ZETE T S R B DG T, DT 7E B i S 4 R T SE L B
B RUE RSN PR RE . E X LE SE S 09 M RE 48 A T, F1-
Score J& M B 2R A ] F 14 I8 A 2150, 256 R AR B A
PEPERE s X error near Fl X error far 4381 32 7 25 4 35 4b
TS Ak 2 T 2 Ao i 45 S A AKF 5 ) b B 1R 22, 5% 0 ZE 5 Y
S ) e SR 4 ) 0 A Uy 1 BRSO R 5 Z error near Al Z
error far W 43 51 4% 3% 224 300 A A0 378 ALb 2 3 28 A6 I 485 SR AE
JE 7 1) b (R 25, X A2 05 1Y g A AR L O B ST A IR R
FERFIR R RO E S, b xF X ek e 4w . ] R 0
UEAR SCAS YA o B A R A 4 v 1 O S D Sk

SIS AE BRI AR SO A Apollo BUHE 4 _FHUS T & df
MR TE OpenLane 8046 46 M B PR 458 IO W 55 146 LA
BRI LN, 3 A X T A SO 5 AR RIZE Apollo %X
PEEAR R T IERERI, 450 BR AR ITELE F1 58
AT T AR T C AR A G R 25 1 3 S AR T
Fo 25 LRI AE AR EfficientNet- B0 3T W45
FPE LT o 38 J2 i FH 2L Atk A A BEV-LaneDet (1) ResNet-34 F
T RIZE I, A SO AR BEV-LaneDet 75 F1 704 14 i #42
T RS SO A R
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Table 4 Experimental comparison of models in different scenarios on the Apollo dataset

Scene Method F1-Score X error near X error far 7 error near 7 error far
CLGO™ 91.9 0. 061 0. 361 0. 029 0. 250
PersFormer"" 92. 2 0. 054 0. 356 0.010 0.234
Balaneed CurveFormer™ 95. 8 0.078 0. 326 0.018 0.219
Seence BEV-LaneDet"" 96. 9 0.016 0.242 0.02 0.216
Anchor3Dlane™™ 95. 4 0. 045 0. 300 0.016 0.223
LaneCPP"" 97. 4 0. 030 0. 277 0.011 0. 206
Ours 98. 15 0.028 0. 249 0.018 0.213
CLGO™ 86. 1 0. 147 0.735 0.071 0. 609
PersFormer 87.5 0.107 0.782 0. 024 0. 602
Rarcly CurveFormer" 95.6 0.182 0.737 0.039 0.561
Observed BEV—LaneDet“fJ 97.6 0. 031 0.594 0. 040 0. 556
Anchor3Dlane” 94. 4 0. 082 0. 699 0. 030 0. 580
LaneCPP™" 96. 2 0.073 0. 651 0.023 0.543
Ours 98. 59 0. 054 0. 605 0. 033 0.542
CLGO™ 87.3 0. 084 0. 464 0. 045 0. 312
PersFormer"" 89. 6 0.074 0. 430 0.015 0. 266
Visual CurveFormer" 90. 8 0.125 0.410 0.028 0. 254
Variations BEvaaneDe{“i1 95.0 0.027 0. 320 0.031 0. 256
Anchor3Dlane” 91.8 0.047 0.327 0.019 0.219
LaneCPP-'" 90. 4 0. 054 0.327 0.020 0.222
Ours 96. 26 0. 026 0.263 0.017 0. 226
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Table 5 Experimental comparison under the same backbone

Backbone Scene Ours  BEV-LaneDet
Balanced Scenes  97.95 96.9
ResNet-34 Rare Observed ~ 98. 47 97.6
Visual Variations 95.57 95.0
Balanced Scenes  98. 15 97.8
EfficientNet-BO  Rare Observed ~ 98. 59 97.7
Visual Variations 96. 46 95.7

xe6

1E Openlane 3R 5E11) 6 35w, R SCE R 53T L
MO0 FL 28076 L FL 2 E08E s, A Tl S AT
IR ) 25 P A7, ST B PR AR A, 25 SR AN 3R 6 TR . AR SUHE
JAE Up & Down,Extreme Weather, Night. Intersection 3 5
FIEA AE Curve Merge & Split & 5t RILEA 52T
H T AT — b B UEAS SO R AE R W] 3 BT (W RE L A SCXE
Openlane B8 4E 1 AN Rl 3 5047 T B 40P 4il 0 & F1 4
BOREH R (P) A [ RO ML iR 22 25 R AN K 7 iR,
SR AR R A RUR T 9055 0 B A R T LA
BT BBIAE R i R S TR ) 350 T R TE IR R

R B 7E Openlane B EW A EH R THITEEITLE

Table 6 Experimental comparison of models in different scenarios on the Openlane dataset

ik Up & Down Curve Extreme Weather Night Intersection Merge & Split
3D-LaneNet'” 40. 8 46.5 47.5 41.5 32.1 41.7
Gen-LaneNet"" 25. 4 33.5 28. 1 18.7 21. 4 31.0
PersFormer"" 42.4 55. 6 48. 6 46. 6 40.0 50. 7
CurveFormer" 45.2 56. 6 49.7 49.1 42.9 45.4
BEV-LaneDet""" 48.7 63.1 53. 4 53. 4 50. 3 53.7
Anchor3Dlane™ 46. 7 57.2 52.2 47.8 45. 4 51. 2
LaneCPP™" 53.6 64. 4 56.7 54.9 52.0 58.7
PVALane'” 52.6 65.7 59.5 56.5 52.2 58.7
Ours 56. 4 59.1 60.2 56.5 56. 8 51.0
F 7 HEEFE Openlane HIBEREFH R THFMAITMRE
Table 7 Detailed evaluation of models in different scenarios on the Openlane dataset
5t F1/% 1 | P/% 1 R/% 1 Xrerror/my Zrerror/my
near/far near/far
Up & Down 56. 4 52.1 61.5 0.231/0. 911 0.207/0. 912
Curve 59.1 55.6 63.2 0. 318/0. 790 0.215/0. 654
Extreme Weather 60. 2 53.5 68. 8 0.198/0. 679 0.185/0. 674
Night 56.5 46. 8 71.4 0.246/0. 591 0.254/0. 596
Intersection 56. 8 48.1 69. 4 0.419/0. 645 0.427/0. 686
Merge &. Split 51.0 45.9 57.5 0.395/0. 664 0.324/0. 589

2.4 FHRMALR

BB LG T AL B2 36 FE V100 GPU + Pytorch 1. 10
WEE R 4T, 8 Apollo 4 48 Fl Openlane 4 4 #17
Wik, FELME RES R E LT RBESH R B/NE
fERER 0. 9 AR EBEM A IR 6 BB IR/ SUBCH 15,
FEARSCRERI T AL 45 o 0 & 6 TR, Apollo %98 4 &
AE 6D HKE 6(b) (OB T EHL L. B 6(d. (e,
(DM E % WE . i &= R as 5 ik 7 pros,

Openlane LR BE 7586 K 7D A (B 7o &
(B & 7CD TR E R SE R . BT AT AL 45 R 0k B
AR H AR Bt Front View(J5UE) \BEV (&) .3D(=
Yz 1) LA X . LG 7 SE 1 T4k 48 45 R & » Apollo
B A W] AL 25 R 2 R AR 4R %5 227 1 5 T Openlane £4i
SEAETROG I M) 3 57 T BAFAE JR &8 T, (5 8 4K T 2 PR AT
FRVE RS . TS R R A SR Jr R TE R A
B E TS5 T T LSRRI 2B 2
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Fig. 6 Detection results by the model on the Apollo dataset
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Fig. 7 Detection results by the model on the Openlane dataset
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