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摘 要:针对如光照突然变化、极端天气等环境干扰导致的鸟瞰图车道线检测中的特征模糊和误检问题,本文提出了

一种基于因果干预的BEV车道检测框架。首先,为提升BEV空间转换过程中特征的表示效果,设计复合位置编码并

融合至前视图特征,以保持空间连续性与一致性。其次,在获取BEV特征后构建因果干预模块,因果干预模块旨在通

过生成反事实特征来显式地将车道线特征与环境干扰解耦,以提高模型在极端环境中的稳定性。最后,通过引入特征

融合模块完成多尺度特征的动态校准与干扰抑制,并利用全局注意力机制实现BEV特征的增强。实验结果表明,在

Apollo数据集的三个子集中,相比于性能第2的模型,F1值提高了0.8%、1%、3%;在 OpenLane数据集内的包含极

端天气、夜间及交叉路口等挑战性场景中,F1值也达到了最佳。成功实现了车道线特征与环境干扰的显式解耦,为复

杂环境下的自动驾驶感知提供了高鲁棒性解决方案。
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Abstract:Aiming
 

at
 

the
 

feature
 

ambiguity
 

and
 

misdetection
 

problems
 

in
 

bird's
 

eye
 

view
 

lane
 

line
 

detection
 

caused
 

by
 

environmental
 

disturbances
 

such
 

as
 

sudden
 

changes
 

in
 

illumination
 

and
 

extreme
 

weather,
 

this
 

paper
 

proposes
 

a
 

causal
 

intervention-based
 

BEV
 

lane
 

detection
 

framework.
 

First,
 

to
 

enhance
 

the
 

representation
 

of
 

features
 

during
 

BEV
 

spatial
 

transformation,
 

composite
 

positional
 

encoding
 

is
 

designed
 

and
 

fused
 

to
 

front
 

view
 

features
 

to
 

maintain
 

spatial
 

continuity
 

and
 

consistency.
 

Second,
 

the
 

causal
 

intervention
 

module
 

is
 

constructed
 

after
 

acquiring
 

the
 

BEV
 

features.
 

The
 

causal
 

intervention
 

module
 

aims
 

to
 

explicitly
 

decouple
 

the
 

lane
 

line
 

features
 

from
 

the
 

environmental
 

disturbances
 

by
 

generating
 

counterfactual
 

features
 

to
 

improve
 

the
 

stability
 

of
 

the
 

model
 

in
 

extreme
 

environments.
 

Finally,
 

the
 

dynamic
 

calibration
 

of
 

multi-scale
 

features
 

and
 

interference
 

suppression
 

is
 

accomplished
 

by
 

introducing
 

the
 

feature
 

fusion
 

module,
 

and
 

the
 

global
 

attention
 

mechanism
 

is
 

utilized
 

to
 

achieve
 

the
 

enhancement
 

of
 

BEV
 

features.
 

The
 

experimental
 

results
 

show
 

that
 

in
 

the
 

three
 

subsets
 

of
 

the
 

Apollo
 

dataset,
 

the
 

F1
 

values
 

are
 

improved
 

by
 

0.8%,
 

1%,
 

and
 

3%
 

compared
 

to
 

the
 

model
 

with
 

the
 

2nd
 

performance,
 

and
 

the
 

F1
 

values
 

are
 

also
 

optimal
 

in
 

the
 

challenging
 

scenarios
 

within
 

the
 

OpenLane
 

dataset
 

that
 

contain
 

extreme
 

weather,
 

night,
 

and
 

intersections.
 

The
 

explicit
 

decoupling
 

of
 

lane
 

line
 

features
 

and
 

environmental
 

disturbances
 

is
 

successfully
 

realized,
 

providing
 

a
 

highly
 

robust
 

solution
 

for
 

autonomous
 

driving
 

perception
 

in
 

complex
 

environments.
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资助

0 引  言

  车道线检测是自动驾驶系统的重要组成部分,受到了

学术界和工业界的广泛关注。实时准确的车道线检测是高

级自动驾驶的基础之一,在智能巡航控制,定位和地图构建

中起着重要作用。目前2D车道线检测方法已经获得了显

著的成果。但是通过前视图执行车道线检测的框架不适用

于实际工业产品,下游任务通常要求车道位置以鸟瞰图
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(bird's
 

eye
 

view,BEV)的形式呈现[1]。
为了适应下游任务,大部分3D车道线检测方法通过

空间转换的方式将前视图特征转换成BEV特征,之后再投

影到BEV空间。开创性工作3D-LaneNet[2]首次将逆透视

映射[3](inverse
 

perspective
 

transformation,IPM)与基于锚

点的车道表示相结合。其优势在于利用IPM 显式建模透

视变换,但其锚点设计对复杂拓扑车道的适应性有限。为

了解决这一问题,Gen-LaneNet[4]提出了一个两阶段框架,
通过几何引导的锚点生成提高了泛化能力,但代价是计算

冗余。PersFormer[1]基于 Transformer实现了前视图与

BEV空间的特征动态对齐[5],支持统一2D/3D锚点建模,
但其计算复杂度较高,且视角畸变问题在长距离检测中仍

存挑战。
针对效率与精度平衡,近期研究提出多种创新方法。

PVALane[6]利用2D车道预测作为稀疏先验锚点,并结合

轻量化的视图无关特征对齐模块,实现了实时推理。然而,
其性能高度依赖2D检测的准确性,若2D检测失败,误差

会传递至后续模块。Anchor3Dlane[7]和CurveFormer[8]虽
然绕开了传统视角转换带来的图像扭曲问题,但它们需要

大量带有精确3D标记的数据来训练模型。然而,在极端

天气下,这类方法的表现会大打折扣,因为训练数据中很少

包含这类天气的真实场景,模型面对模糊的车道线时,很难

准确预测出它们的3D形状和位置。
尽管现有方法在标准场景下已取得显著进展,但在真

实驾驶环境中频繁出现的复杂干扰因素导致的图像特征模

糊、几何畸变加剧现象[9],严重削弱了现有车道线检测模型

鲁棒性[10]。近年来,因果推断被视为解决环境干扰导致泛

化瓶颈的关键方向。然而,现有相关方法仍存在显著局限:
传统方法如多环境数据增强或对抗训练虽能缓解部分过拟

合,但难以建模环境因子与车道语义的因果关联[11-12]。不

变性学习方法(invariant
 

risk
 

minimization,IRM)[13]需多环

境标注数据支撑,而实际车载场景中环境标签获取成本高

昂;干预性生成模型[14]通过特征随机化打破虚假关联,但
未显式解耦车道特征中的环境噪声。此外,反事实生成技

术源于文本领域,难以适配车道线的高维空间特性。而结

构因果模型[15]其复杂的图推理机制在高维视觉任务中计

算效率较低。上述局限表明,现有因果推断方法尚不足以

有效应对复杂环境干扰带来的鲁棒性难题。因此,如何构

建一种对复杂环境干扰具备强免疫力的车道线检测框架,
成为学术界与工业界亟待突破的核心挑战[10]。

本文聚焦于提升BEV车道线检测在复杂环境下的鲁

棒性。本文的核心工作建立在BEV-LaneDet[16]模型的基

础之上,并针对其关键不足进行改进。BEV-LaneDet利用

基于多层感知机(multilayer
 

perceptron,MLP)的空间转换

模块将前视图特征映射为BEV特征,无需真实相机参数是

其优势。然而,在转换过程中,MLP将二维特征图压缩为

一维向量,严重破坏了特征的空间结构信息,直接造成检测

精度下降。尽管后续改进模型LaneCPP[17]
 

利用物理先验

驱动的三维参数化建模克服了传统 MLP固定映射的缺

陷,其方法仍未能有效解决复杂环境干扰与车道线语义深

度耦合的影响。
为突破BEV-LaneDet的固有缺陷以及LaneCPP未能

解决的问题,本文以BEV-LaneDet模型为基础,对其空间

转换模块进行改造,并引入因果干预机制,提出以下针对性

改进策略:

1)针对原空间转换模块破坏空间结构的问题,本文在

空间转换模块中引入复合位置编码。通过该位置编码网络

将绝对位置信息与相对空间关系深度融合,显著增强了输

入特征空间位置信息的表达能力。

2)为提升特征质量并抑制噪声,本文对原模型结构进

行优化,在空间转换模块后添加特征融合模块与全局注意

力机制。特征融合模块通过多尺度特征交互抑制环境噪声

干扰;全局注意力机制则利用长程依赖关系强化模型对弱

纹理车道线的感知能力,避免关键细节丢失。

3)为从根本上解决环境干扰与车道语义耦合的问题,
本文设计了因果干预模块。该模块通过生成反事实BEV
特征,显式地剥离光照突变、动态遮挡等环境干扰因子与车

道线语义的虚假关联,确保模型在极端条件下的输出稳定

性与鲁棒性。
通过详尽的对比实验和消融实验,本文验证了所提整

体模型及各改进模块的有效性。实验结果表明,本文方法

在极端天气和夜间低照度等复杂场景下均取得了最优异的

效果,显著提升了车道线检测的鲁棒性和精度。

1 模型设计

1.1 模型结构

  如图1所示,本文网络由虚拟相机、特征提取、复合位

置编码、空间转换、特征增强、因果干预模块和3D输出头7
个部分构成,其中复合位置编码、特征增强、因果干预模块

为文本所做改进部分,在图1中以黑实线框出。网络首先

通过虚拟相机对输入的前视图进行预处理,将图像转换为

内外参数一致的形式,这种预处理方式保证了空间关系的

一致性。预处理后的图像作为输入,通过EfficientNet[18]骨
干网络进行特征提取,获取前视图特征。提取的前视图特

征与复合位置编码拼接后,被送入 MLP进行BEV转换。
转换获得的BEV特征依次进入特征融合模块和全局注意

力机制中进行特征增强,随后由因果干预模块去除混杂的

环境因子,得到最终的BEV 特征。将BEV 平面划分为

c1×c2 个单元格并预测该平面上的车道位置。预测包括每

个单元格的置信度,嵌入度,以及每个单元格中车道y 方

向的偏移量和高度信息z,通过将每个分支的结果融合得

到三维车道。

1.2 复合位置编码

  传统基于 MLP的BEV转换方法通过全连接网络直
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图1 模型整体框架图

Fig.1 Overall
 

framework
 

of
 

the
 

model

接映射前视图特征至鸟瞰空间,其核心问题在于空间信息

丢失与位置敏感性不足。具体表现为:1)空间结构破坏:

MLP需将2D特征图展平为1D向量,导致局部空间关联

性被破坏。假设输入特征维度为C×H×W,展平后为

C×(W·H),此时相邻像素的几何关系无法有效保留;

2)位置先验缺失:传统方法依赖隐式学习空间映射,缺乏

显式位置编码,难以建模复杂透视变换。对于远距离或遮

挡区域,特征位置歧义性显著增加。
本 研 究 提 出 一 种 复 合 位 置 编 码 器 (composite

 

positional
 

encoding,CPE),通过双通道正交编码分离横向

与纵向位置特征,并通过增加通道维度,利用指数项实现

多频带编码,由低频通道编码宏观布局,高频通道捕获局

部细节,来解决上述问题。数学表达式如下:

CPE(c,h,w)=

sin
w

10
 

000
2c
d  , c

 

bmod
 

2=0

cos
h

10
 

000
2(c-1)

d  ,c
 

bmod
 

2=1

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁􀪁

(1)
式中:d 表示总通道数,c表示当前通道,h和w 表示空间

坐标,10
 

000
2c
d 为指数项。

如图2所示,对比了不同频率的编码模式,高频通道

(如Channel
 

0)的编码值在宽度方向快速震荡,适用于捕捉

细粒度位置特征,低频通道(如Channel
 

10)的编码值变化

缓慢,用于建模全局位置关系。这种设计不仅保证了不同

方向位置信息的正交性,还通过空间维度保持机制避免了

传统展平处理导致的空间信息丢失。

图2 不同编码模式展示

Fig.2 Display
 

of
 

different
 

encoding
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之后,将原始前视图特征Fimg ∈RC×H×W 与位置编码

CPE ∈RC×H×W 沿通道维度拼接,得到增强特征Fenhanced =
ConcatFimg,CPE  ∈R2C×H×W,随后通过两阶段全连接层

实现BEV空间投影。

1.3 特征融合模块

  在多尺度前视图特征经过CPE处理并通过基于 MLP
的BEV空间转换模块后,获得了多个含有大量位置信息

的BEV特征。由大尺度前视图特征转换得到的BEV特

征携带精确的局部信息,小尺度前视图特征转换后的特征

会提 供 广 泛 的 上 下 文 信 息。本 文 通 过 特 征 融 合 模 块

(temporal
 

fusion
 

attention
 

module,TFAM)将携带不同信

息的BEV特征进行融合,以此来获得更多的空间信息。
使用基于通道-空间双分支的特征融合模块TFAM[19]

实现了BEV特征的高效融合。TFAM 结构如图3所示,

该模块针对输入特征张量分别构建通道注意力分支和空

间注意力分支并进行池化操作。通过池化操作,实现了对

全局空间信息的压缩和提取,从而更好的捕捉输入特征图

的重要信息[20]。之后通过聚合,分别生成通道特征和空间

特征。聚合的特征保留了两个特征中更有价值的部分,同
时抑制了不重要或误导性的信息。其数学解析式如式(2)
和式(3)所示。

SC =Concat(Avg(Fb1),Max(Fb1),Avg(Fb2),Max(Fb2))
(2)

SS =Concat(Avg(Fb1),Max(Fb1),Avg(Fb2),Max(Fb2))
(3)

式中:Fb1∈RC×H×W 和Fb2∈RC×H×W 为输入特征,Avg(·)
和 Max(·)分别表示全局平均池化和全局最大池化,SC 和

SS 分别表示生成的通道特征和空间特征。

图3 TFAM结构图

Fig.3 TFAM
 

structure
 

diagram

  聚合后的通道特征和空间特征通过两个卷积得到不

同BEV特征的权重,并通过Softmax使权重之和为1。最

后,将通道和空间权重与BEV特征相乘并进行汇总,以有

效地融合BEV特征。数学表达式如下:

WC1 =SoftmaxConv1 SC    
WC2 =SoftmaxConv2 SC     (4)

WS1 =SoftmaxConv1 SS    
WS2=SoftmaxConv2 SS     (5)

FBEV = WC1+WS1  ×Fb1+ WC2+WS2  ×Fb2 (6)
式中:FBEV 为输出的融合BEV特征,WC1、WC2为通道分支

得到的两个BEV特征的通道权重矩阵,WS1和WS2为空间

权重矩阵。

1.4 全局注意力机制

  本文对融合后获得的多个BEV特征进行了拼接操

作。拼接后的特征包含了整个场景的上下文信息,增加了

特征的丰富性。但与此同时,在拼接多个BEV特征后会

导致特征表示的模糊性,模型可能难以区分哪些特征更为

重要。为了解决这个问题,本文考虑并使用全局注意力机

制[21](global
 

attention
 

mechanism,GAM),全局注意力结

构如图4所示。全局注意力机制能够自动学习不同特征

之间的依赖关系,并为每个特征分配一个权重,表示其在

特定任务中的重要性。同时,全局注意力机制考虑到跨维

交互的重要性,能够捕获通道、空间宽度和空间高度3个

维度的显著特征,进 一 步 增 强 空 间 信 息。整 个 流 程 如

式(7)和(8)中所示。

Fmid =MC FBEV  􀱋FBEV (7)

F'BEV=MS Fmid  􀱋Fmid (8)
式中:FBEV ∈RC×H×W 为输入特征,

 

Fmid 为中间特征、F'BEV
为输出特征,MC、MS 分别表示全局注意力机制内的通道

注意力子模块和空间注意力子模块,􀱋为元素之间的

乘法。

1.5 因果干预机制

  在复杂动态交通场景中,车道线检测模型易受环境混

杂因子(如光照变化、天气条件等)的干扰,导致特征表达
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 第49卷 电 子 测 量 技 术

图4 全局注意力结构图

Fig.4 Global
 

attention
 

structure
 

diagram

与车道线语义间存在虚假相关性。
本 文 提 出 一 种 轻 量 化 因 果 干 预 模 块 (causal

 

intervention
 

module,CIM),通过环境因子估计与反事实特

征生成,实现特征空间的环境因子解耦,流程如图5所示。
该方法基于Pearl[22]的因果推断理论框架,建立结构化因

果模型,定义观测变量三元组 F'BEV,Y,E  ,其中F'BEV∈
RC×H×W 为输入特征图,Y为车道线预测结果,E∈R16为潜

在环境因子。其因果结构可表示为E→F'BEV←Y,表明环

境因子E 作为混杂变量,同时影响特征F'BEV 和预测结果

Y。 传统方法直接学习PY|F'BEV  会继承E 的偏差,而
本方法通过干预doF'BEV=Fcf

BEV  ,阻断E→F'BEV 的后门

路径。具体实现中,首先通过环境因子编码器预估环境

因子:

E =ψθ F'BEV  =MLP GAP F'BEV    (9)
式中:ψθ 为环境因子编码器,GAP(·)为全局平均池化,

MLP(·)由两个全连接层组成,输出16维环境因子E。
随后,通过反事实生成器生成环境因子干预要素e0,

用于干预环境因子。最后构建反事实特征,模拟若环境因

子被干预时的特征表达,迫使模型忽略混杂的环境因子,
直接建模车道线本质属性与预测结果Y 的因果关联。数

学表达式如下:

Fcf
BEV =F'BEV+ΔF'BEV=F'BEV+ϕω(E) (10)

式中:ϕω 为反事实生成器,Fcf
BEV 为生成的反事实特征。

为防止环境因子编码器ψθ 泄露车道线语义信息,引入

对抗训练约束,通过梯度反转层(如式(11)所示)迫使Fcf
BEV

的环境因子不可辨识。具体而言:环境编码器ψθ 的目标是

尽可能准确地估计环境因子E,而GRL通过梯度反转,使
得Fcf

BEV 的优化方向与ψθ 的目标相反,即Fcf
BEV 应尽可能不

包含E 的信息。这种对抗机制迫使Fcf
BEV 与E 独立,即

Fcf
BEV ⊥⊥E。 环境因子损失函数定义为式(12)。

GRL Fcf
BEV  =Fcf

BEV,
 ∂GRL
∂Fcf

BEV
= -λI (11)

图5 因果干预模块流程图

Fig.5 Causal
 

intervention
 

module
 

flowchart

LE =Ex ‖ψθ(Fcf
BEV)‖2

2  (12)

1.6 损失函数

  本文在车道表示上沿用了BEV-LaneDet的车道表示

方法,按照BEV-LaneDet的关键点表示法预测BEV网格

的置信度、嵌入、偏移量以及高度,最后一起用作3D车道

表示[16]。
车道置信度分支采用的是二元交叉熵损失函数,本文

在BEV面上划分了c1×c2 个单元格,通过预测每个单元

格的置信度来判断此单元格内是否有车道存在。如果置

信度预测值为1,认为此单元格内存在车道;如果置信度为

0,则认为车道不存在。损失函数表达如下:

L3d
conf =∑

c1×c2

i
pîlogpi+ 1-pî  log(1-pi)  (13)

式中:pi 表示预测的置信度的概率,p̂i 为通过BEV平面

的分割图获得的真实值。
置信度分支只能够判断是否存在车道,而无法知道每个

单元格内的车道的身份,为此设计了嵌入度分支来区分车道。

L3d
embed =pushweight×L3d

push +pullweight×L3d
pull (14)

式中:嵌入损失中包含pull_loss和push_loss,即方差损失

和距离损失。方差损失是不同车道的单元格之间嵌入度

的方差平均值;距离损失是计算同一个车道的所有单元格

之间嵌入度的平均值。
在有了置信度和嵌入度后,还需要去预测每个单元格

内的车道的位置。通过预测从单元格中心到车道所在位

置的精确偏移量Δy,可以得到y 方向上的地面坐标。损

失函数表达如下:

L3d
offset =∑

c1×c2

i
1obj σ(Δyi)-Δyî  (15)
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式中:1obj 表示车道是否通过此单元格。Δyi 表示与预测的

偏移量,Δŷi 表示与实际的偏移量。
通过置信度,嵌入度和偏移量只能获得在z=0情况

下的坐标(x,y)想要获得三维车道线的位置(x,y,z),还
需要车道的高度信息。直接预测每个单元格内的车道的

高度,并与真实的高度一起进行损失计算。

L3d
z =

1
c1×c2∑

c1×c2

i
zi-zî  2 (16)

式中:zi 为预测的车道高度,ẑi 为真实的车道高度。
除了车道损失和对抗损失外,还计算了前视图损失用

来辅助监督。

Ltotal =wELE +w3d
confL3d

conf +w3d
embedL3d

embed+w3d
offsetL3d

offset+
w3d

zL3d
z +w2d

segL2d
seg +w2d

embedL2d
embed (17)

式中:三维车道损失、环境因子损失与前视图损失之和即

为总损失,w 为各损失函数的权重。

2 实验与分析

2.1 数据集与评价指标

  本文在Apollo
 

3D虚拟数据集和OpenLane数据集上

对模型性能进行了评估。为了确保实验结果的可靠性,采

用Gen-LaneNet的评估指标来验证上述的两个数据集,包
含不同场景下的F1-Score和X/Z

 

误差,实验中的最优结果

以加粗格式标注,次优结果以加下划线格式呈现。
Apollo数据集是利用 Unity游戏引擎渲染的虚拟数

据集,其中包含了3个场景:路面平坦的场景,很少被注意

到的场景以及存在视觉变化的场景。数据集包括10
 

500
张车道图片以及对应的车道真实数据。

OpenLane数据集是目前最大的真实世界3D车道数

据集,包含15万个训练帧,4万个测试帧,14个车道类别以

及场景标签和路线邻近目标注释。数据集包含6个场景,
分 别 为 Curve、Intersection、Merge_split、Extreme_
weathere、Night、Up_down。
2.2 消融实验与分析

  为了验证因果干预模块(CIM)、复合位置编码(CPE)、
特征融合模块(TFAM)和全局注意力机制(GAM)的有效

性,本文在
 

Apollo测试集上开展系统性消融实验,结果如

表1所示。实验以EfficientNet-B0为基线主干网络,通过

逐步叠加上述4个核心模块,定量分析各组件对检测性能

的贡献度。分析表1可以看出,当单独使用各模块时F1
分数均有所上升,同时使用4个模块时,F1分数达到了最

好的指标,X
 

error也降至最低,验证了各模块的有效性。

表1 消融实验

Table
 

1 Ablation
 

experiment
EfficientNet-B0 CIM CPE TFAM GAM F1-Score X

 

error
√ - - - - 96.90 0.046/0.300
√ √ - - - 97.50(+0.6) 0.045/0.279
√ - √ - - 97.97(+1.07) 0.031/0.25
√ - - √ - 97.42(+0.52) 0.040/0.280
√ - - - √ 97.22(+0.32) 0.034/0.25
√ √ √ - - 98.02(+0.52) 0.030/0.248
√ √ - √ - 97.69(+0.79) 0.030/0.269
√ √ - - √ 97.96(+1.06) 0.034/0.281
√ √ √ √ √ 98.20(+1.3) 0.028/0.249

  注:加粗字体为每列最优值,√表示采用,-表示未采用

  同时,为了验证多尺度前视图特征转换为多个BEV
特征后,不同BEV特征相互融合对模型精度的影响,本文

添加了表2。其中b32 表示输入图像的32倍下采样,通过

空间转化获得的BEV 特征,+表示特征融合,b32+b64,
 

b64+b128 表示两个融合后的特征进行拼接。
实验表明,在多尺度前视图特征转换成BEV特征后,

对b32,b64 和b128 进行两两融合,并将这两组融合特征进行

拼接,可以获得最优的模型性能。这种组合效果最佳的原

因在于:b32(全局语义强,空间细节弱)、b64(语义与细节平

衡)和b128(局部细节强,语义弱)这3个关键尺度通过b64
形成连续的信息链。b32 +b64 融合提供了全局上下文与中

等细节的互补,b64+b128 融合则实现了中等语义对局部细

节的有效支撑。最终的拼接操作整合了这条从全局到局

部的完整且连贯的信息流(b32→b64→b128),覆盖了感知任

  表2 融合不同BEV特征带来的影响

Table
 

2 The
 

impact
 

of
 

fusing
 

different
 

BEV
 

features

Different
 

Combinations
F1-Score

X
 

error
 

near
X

 

error
 

far
b32+b64 97.77 0.035 0.284
b64+b128 97.27 0.036 0.250

b32+b64, b32+b64 95.37 0.044 0.399
b32+b64,

 

b64+b128 98.2 0.028 0.249
b32+b64,

 

b128+b256 97.95 0.028 0.297

务所需的最有效信息范围。相比之下,其他组合要么信息

覆盖不全(如仅用单一组合b32+b64 或b64+b128),要么存

在尺度断裂或信息冗余(如b32+b64,b128+b256 缺少b64→
b128 的过渡,b32+b64,b32+b64 则是重复融合)。
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本文的方法聚焦于为复杂环境(如雨雾、雪天)下的自

动驾驶感知提供高鲁棒性解决方案,为了验证本文改进模

块在复杂环境下的表现效果,本文在 OpenLane数据集内

的极端天气和夜间这两个具有挑战性的场景中进行了消

融实验,实验以F1分数为指标进行评估,Base为基础模型

未添加改进模块,详情如表3所示。实验表明,在面对复

杂场景时,因果干预机制通过解耦环境干扰和车道线语

义,有效抑制环境混淆因子影响,提升车道检测鲁棒性。

表3 复杂场景下各模块效果对比

Table
 

3 Module
 

efficacy
 

in
 

complex
 

scenes
Method Extreme

 

weather Night
Base

 

53.4 53.4
Base

 

with
 

CIM 57.5 55.8
Base

 

with
 

CPE 56.1 54.9
Base

 

with
 

TFAM 54.0 53.7
Base

 

with
 

GAM 54.3 54.2

2.3 模型对比结果

  为 了 验 证 模 型 的 效 果,本 文 在 Apollo数 据 集 和

OpenLane数据集上进行了实验并与前人的实验结果进行

比 较,包 括 PersFormer[1]、CLGO[23]、CurveFormer[8]、

BEV-LaneDet[16]、LaneCPP[17]等。与上述方法类似,本文

方法同样在三维空间进行车道线检测,并致力于解决前视

图到BEV的视角转换问题。区别于上述方法,本文核心

创新在于引入因果干预机制,显式建模并剥离环境干扰与

车道语义的虚假关联,从而在极端复杂环境下实现更鲁

棒、稳定的检测性能。在对比实验的性能指标方面,F1-
Score是精确率和召回率的调和平均数,综合反映模型整

体性能[24];X
 

error
 

near和X
 

error
 

far分别表示车辆近处

和远处车道线检测结果在水平方向上的误差,影响车辆的

短期决策控制和远方道路状况预判规划;Z
 

error
 

near和Z
 

error
 

far则分别代表车辆近处和远处车道线检测结果在高

度方向上的误差,对车辆的高度控制、远方道路立体感知

和提前决策至关重要。通过对比这些性能指标,可充分验

证本文模型在准确性和鲁棒性等方面的优势和先进性。
实验结果表明,本文方法在Apollo数据集上取得了最好

的效果,在OpenLane数据集的极端环境,夜晚等子集上也有

着最好的发挥。表4对比了本文方法与其他模型在
 

Apollo
 

数

据集不同场景下的性能表现。结果显示,本文方法在F1分数

上全面优于基线方法,尤其在存在视觉误差的场景中提升显

著。表5进一步表明,不管是在采用EfficientNet-B0主干网络

的情况下,还是使用基础模型BEV-LaneDet的ResNet-34主

干网络时,本文模型相较BEV-LaneDet在F1分数上均显著提

升,验证架构改进有效性。

表4 模型在Apollo数据集的不同场景下进行实验对比

Table
 

4 Experimental
 

comparison
 

of
 

models
 

in
 

different
 

scenarios
 

on
 

the
 

Apollo
 

dataset
Scene Method F1-Score X

 

error
 

near X
 

error
 

far Z
 

error
 

near Z
 

error
 

far

Balanced
Scenes

CLGO[23] 91.9 0.061 0.361 0.029 0.250
PersFormer[1] 92.2 0.054 0.356 0.010 0.234
CurveFormer[8] 95.8 0.078 0.326 0.018 0.219
BEV-LaneDet[16] 96.9 0.016 0.242 0.02 0.216
Anchor3Dlane[7] 95.4 0.045 0.300 0.016 0.223
LaneCPP[17] 97.4 0.030 0.277 0.011 0.206
Ours 98.15 0.028 0.249 0.018 0.213

Rarely
 

Observed

CLGO[23] 86.1 0.147 0.735 0.071 0.609
PersFormer[1] 87.5 0.107 0.782 0.024 0.602
CurveFormer[8] 95.6 0.182 0.737 0.039 0.561
BEV-LaneDet[16] 97.6 0.031 0.594 0.040 0.556
Anchor3Dlane[7] 94.4 0.082 0.699 0.030 0.580
LaneCPP[17] 96.2 0.073 0.651 0.023 0.543
Ours 98.59 0.054 0.605 0.033 0.542

Visual
 

Variations

CLGO[23] 87.3 0.084 0.464 0.045 0.312
PersFormer[1] 89.6 0.074 0.430 0.015 0.266
CurveFormer[8] 90.8 0.125 0.410 0.028 0.254
BEV-LaneDet[16] 95.0 0.027 0.320 0.031 0.256
Anchor3Dlane[7] 91.8 0.047 0.327 0.019 0.219
LaneCPP[17] 90.4 0.054 0.327 0.020 0.222
Ours 96.26 0.026 0.263 0.017 0.226
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表5 相同主干网络下的实验对比

Table
 

5 Experimental
 

comparison
 

under
 

the
 

same
 

backbone

Backbone Scene Ours BEV-LaneDet

ResNet-34
Balanced

 

Scenes 97.95 96.9
Rare

 

Observed
 

98.47 97.6
Visual

 

Variations 95.57 95.0

EfficientNet-B0
Balanced

 

Scenes 98.15 97.8
Rare

 

Observed
 

98.59 97.7
Visual

 

Variations 96.46 95.7

  在Openlane数据集的6个场景中,本文将模型与近几

年的优化方法的F1分数进行对比,F1分数越高,召回率和

回归率越平衡,模型的性能越好,结果如表6所示。本文模

型在Up
 

&
 

Down、Extreme
 

Weather、Night、Intersection场景

表现最优,在Curve、Merge
 

&
 

Split场景中表现还有待提升。
为了近一步验证本文模型在不同场景下的性能,本文对

Openlane数据集的不同场景进行了详细评估,包含F1分

数、精确率(P)、召回率(R)和几何误差,结果如表7所示。
实验结果表明,通过因果干预、复合位置编码等方法可以有

效提升模型在极端天气、夜间等场景下的车道识别能力。

表6 模型在Openlane数据集的不同场景下进行实验对比

Table
 

6 Experimental
 

comparison
 

of
 

models
 

in
 

different
 

scenarios
 

on
 

the
 

Openlane
 

dataset

方法 Up
 

&
 

Down Curve Extreme
 

Weather Night Intersection Merge
 

&
 

Split

3D-LaneNet[2] 40.8 46.5 47.5 41.5 32.1 41.7

Gen-LaneNet[4] 25.4 33.5 28.1 18.7 21.4 31.0

PersFormer[1] 42.4 55.6 48.6 46.6 40.0 50.7

CurveFormer[8] 45.2 56.6 49.7 49.1 42.9 45.4

BEV-LaneDet[16] 48.7 63.1 53.4 53.4 50.3 53.7

Anchor3Dlane[7] 46.7 57.2 52.2 47.8 45.4 51.2

LaneCPP[17] 53.6 64.4 56.7 54.9 52.0 58.7

PVALane[6] 52.6 65.7 59.5 56.5 52.2 58.7

Ours 56.4 59.1 60.2 56.5 56.8 51.0

表7 模型在Openlane数据集不同场景下的详细评估

Table
 

7 Detailed
 

evaluation
 

of
 

models
 

in
 

different
 

scenarios
 

on
 

the
 

Openlane
 

dataset

场景 F1/%􀲔􀲕 P/%􀲔 R/%􀲔
X-error/m↓
near/far

Z-error/m↓
near/far

Up
 

&
 

Down 56.4 52.1 61.5 0.231/0.911 0.207/0.912

Curve 59.1 55.6 63.2 0.318/0.790 0.215/0.654

Extreme
 

Weather 60.2 53.5 68.8 0.198/0.679 0.185/0.674

Night 56.5 46.8 71.4 0.246/0.591 0.254/0.596

Intersection 56.8 48.1 69.4 0.419/0.645 0.427/0.686

Merge
 

&
 

Split 51.0 45.9 57.5 0.395/0.664 0.324/0.589

2.4 可视化实验

  车道线检测可视化实验在V100
 

GPU
 

+
 

Pytorch
 

1.10
 

环境下进行,使用 Apollo数据集和 Openlane数据集进行

测试。车道线拟合关键参数设定包含聚类分割图最小置

信度为0.9、不同集群嵌入边际为6、集群最小点数为15。
在本文模型可视化结果中:如图6所示,Apollo

 

数据集展

示图6(a)白天,图6(b)、(c)黄昏直线、曲线,图6(d)、(e)、
(f)夜间直线、坡道、曲线场景的检测结果;如图7所示,

Openlane
 

数据集呈现图7(a)强光、图7(b)阴影、图7(c)夜
间、图7(d)雨天场景的检测结果。所有可视化结果均来自

本文模型且提供
 

Front
 

View(原图)、BEV(鸟瞰图)、3D(三
维空间)三视角对比。从视觉连续性评估指标来看,Apollo
数据集的可视化结果全程保持连续平滑;而Openlane数据

集在强光与夜间场景下虽存在局部中断,但整体连续性仍

得到有效维持。可视化结果表明,本文的方法在有复杂环

境因素干扰的场景下可以准确检测出车道线。
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图6 模型在Apollo数据集的检测结果

Fig.6 Detection
 

results
 

by
 

the
 

model
 

on
 

the
 

Apollo
 

dataset

图7 模型在Openlane数据集的检测结果

Fig.7 Detection
 

results
 

by
 

the
 

model
 

on
 

the
 

Openlane
 

dataset

3 结  论

  本文提出了一种鲁棒的BEV车道线检测方法。通过

复杂位置编码解决了基于 MLP的BEV空间转换方法中

存在的空间信息丢失问题,并采用特征融合以及全局注意

力机制对BEV特征进行增强。除此以外,设计的因果干

预模块消除了混杂的环境因子对特征的影响。与近年来

提出的车道线检测方法相比,本文模型在最具代表性的两

个3D车道线检测数据集中具有复杂环境的子集上取得了

最好的效果。综上所述,本文方法在应对复杂环境的车道

线检测任务中展现了卓越的性能。虽然在大曲率弯道等

特定场景下的检测效果尚有改进空间,但其在复杂环境中

的车道线检测能力已得到验证。未来工作将致力于算法

的进一步优化,以期实现更加精准和鲁棒的车道线检测。
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