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摘 要:随着城市化进程的加快,生活垃圾量的持续攀升对生态环境形成严峻挑战,因此基于目标检测的智能分拣技

术成为关键解决方案。针对现有检测模型在复杂场景下精度不足和部署效率低的问题,提出一种改进的YOLO11生

活垃圾检测模型。通过引入可变形卷积和自主设计的三分支坐标注意力机制,构建了增强型可变形卷积模块,并用其

重构骨干网络中的C3k2,显著提升了模型对复杂背景中目标的特征提取能力。此外,采用内容感知特征重组算子替

代颈部网络中的上采样,增强特征重建效果。引入指数移动平均滑动损失函数,有效提升检测精度并加速模型收敛。
在优化后的华为云生活垃圾数据集上进行的实验表明,改进模型在 mAP@0.5和 mAP@0.5:0.95指标上分别达到

76.5%和64.6%,较基线模型提升1.8%和1.7%。相比其他主流检测算法,改进模型参数量仅为2.8
 

M,更适合移动

端部署。
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Abstract:With
 

the
 

acceleration
 

of
 

urbanization,
 

the
 

continuous
 

increase
 

in
 

domestic
 

waste
 

has
 

posed
 

a
 

severe
 

challenge
 

to
 

the
 

ecological
 

environment.
 

Therefore,
 

intelligent
 

sorting
 

technology
 

based
 

on
 

target
 

detection
 

has
 

become
 

a
 

key
 

solution.
 

Aiming
 

at
 

the
 

problems
 

of
 

insufficient
 

accuracy
 

and
 

low
 

deployment
 

efficiency
 

of
 

existing
 

detection
 

models
 

in
 

complex
 

scenarios,
 

an
 

improved
 

YOLO11
 

domestic
 

waste
 

detection
 

model
 

is
 

proposed.
 

By
 

introducing
 

deformable
 

convolution
 

and
 

a
 

self-designed
 

three-branch
 

coordinate
 

attention
 

mechanism,
 

an
 

enhanced
 

deformable
 

convolution
 

module
 

is
 

constructed,
 

which
 

is
 

used
 

to
 

reconstruct
 

C3k2
 

in
 

the
 

backbone
 

network,
 

significantly
 

improving
 

the
 

model'
s

 

feature
 

extraction
 

capability
 

for
 

targets
 

in
 

complex
 

background.
 

In
 

addition,
 

a
 

content-aware
 

feature
 

recombination
 

operator
 

is
 

adopted
 

to
 

replace
 

the
 

upsampling
 

in
 

the
 

neck
 

network,
 

enhancing
 

the
 

feature
 

reconstruction
 

effect.
 

An
 

exponential
 

moving
 

average
 

sliding
 

loss
 

function
 

is
 

introduced
 

to
 

improve
 

detection
 

accuracy
 

effectively
 

and
 

accelerate
 

model
 

convergence.
 

Experiments
 

on
 

the
 

optimized
 

Huawei
 

Cloud
 

domestic
 

waste
 

dataset
 

show
 

that
 

the
 

improved
 

model
 

achieves
 

76.5%
 

and
 

64.6%
 

in
 

mAP@0.5
 

and
 

mAP@0.5:0.95
 

metrics,
 

respectively,
 

with
 

an
 

increase
 

of
 

1.8%
 

and
 

1.7%
 

compared
 

to
 

the
 

baseline
 

model.
 

Compared
 

with
 

other
 

mainstream
 

detection
 

algorithms,
 

the
 

improved
 

model
 

has
 

a
 

parameter
 

count
 

of
 

only
 

2.8
 

M,
 

making
 

it
 

more
 

suitable
 

for
 

mobile
 

deployment.
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0 引  言

  随着城市化进程的加快和居民生活水平的提高,生活

垃圾产量激增,如何高效、准确地进行垃圾分类成为城市管

理面临的重大挑战。传统的人工分类方式难以满足日益增

长的垃圾处理需求,近年来,基于计算机视觉和深度学习技

术的自动垃圾检测方法逐渐成为研究热点。
现有的目标检测算法主要分为单阶段和两阶段两类算

法,二者在检测精度、计算效率及应用场景上存在显著差

异。早 期 研 究 多 采 用 两 阶 段 检 测 器,Chen 等[1]结 合

ResNet-50与RPN,提出基于迁移学习的Faster
 

RCNN模

型,在自建数据集上实现了84.1%的mAP@0.5,但其高计
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算成本限制了实际应用;李博威等[2]通过改进SSD的基础

特征提取网络并引入FPN结构,在减少模型计算量的同时

增强了小目标检测能力。
不同于两阶段目标检测算法的高复杂度与计算成本,

YOLO系列的出现为物体检测带来生机。目前生活垃圾

检测领域已有一些基于YOLO算法的改进颇有成效。范

金豪等[3]替换YOLOv4主干为轻量型特征提取网络,并利

用ECA重构卷积模块,实现了轻量化与检测精度的统一。
涂成 凤 等[4] 在 YOLOv5 的 基 础 上 进 行 改 进,引 入

ShuffleNetv2和 GhostNet实现网络的轻量化,同时引入

SE注意力提高特征提取能力,从而提升准确率。陈君等[5]

在三类垃圾数据集上测试改进的YOLOv7,通过添加注意

力机制以及更改主干网络模块提升检测能力,并对检测框

做出 调 整,实 现 了 较 高 的 检 测 精 度。陈 思 羽 等[6]在

YOLOv8基础模型上加入GAM 注意力机制,在自行整理

的华为云数据集上实现了精度提升。为适应多变的垃圾检

测环境,很多生活垃圾检测着力于多目标研究。Xia等[7]

提出 YOLO-MTG,将 MobileViTv3
 

作为主干网络,结合

EfficientFormer
 

和动态卷积优化 MobileViT块,在自建多

目标垃圾数据集上实现了高精度的轻量化检测。在机器人

应用方面,林哲等[8]融合YOLO和目标分割算法实现了机

器人在遮挡情况下抓取目标,这为垃圾检测的应用落地提

供了支持。
现有生活垃圾检测研究存在两个主要局限:一是现有

研究多集中于特定垃圾子类的识别,且部分数据集背景单

一,缺乏多样化的真实场景;二是现有检测模型参数量较

大,难以兼顾轻量化与检测精度。YOLO11作为YOLO系

列较新的轻量化模型,具有参数量少的优势。然而经文献

调研发现,目前尚未见以YOLO11为基线模型应用于生活

垃圾检测场景的相关研究。为此,本研究融合多个垃圾数

据集创建了一个以华为云垃圾数据集为基础的生活垃圾数

据集,并以YOLO11为基础模型进行改进,旨在实现生活

垃圾种类的多样化与高精度检测。

1 YOLO11算法

  YOLO11 总 体 网 络 结 构 主 要 包 括 骨 干 网 络

(backbone)、颈部网络(neck)和检测头(head)。相较于

YOLOv8模型,YOLO11利用C3k2模块替换C2f模块,增
强了模型的特征提取能力,提升了不同尺度特征的聚合能

力;在SPPF模块后添加了一个基于多头注意力机制的

C2PSA模块;将 YOLOv10的思想引入到检测头中,使用

深度可分离卷积来减少冗余计算,提高了物体检测的精确

度以及效率。其网络结构如图1所示。

YOLO11骨干网络通过5次Conv生成不同尺度的特

征图,C3k2根据CSP原理,将输入特征图分为两部分,一
部分直接参与后续融合,另一部分经过系列卷积提取更深

层的特征。颈部采用双向特征金字塔结构,将主干提取的

图1 YOLO11网络结构

Fig.1 YOLO11
 

network
 

structure

不同尺度、不同层次的特征进行整合和融合,使得后续检测

头能够利用来自低层和高层的信息,增强模型对复杂目标

的检测能力。检测头接收来自颈部的特征融合信息,采用

解耦结构,将定位和分类任务分离成独立的分支,使每个分

支专注于各自的任务,进而提升整体检测精度。

2 改进的YOLO11算法

  生活垃圾种类繁多,且因堆叠和形变导致外观差异大,
易引发误检和漏检,因此需要高精度检测模型。同时,考虑

到实际部署需求,模型必须轻量化。所以,本研究选择在轻

量级YOLO11n模型基础上进行改进,以兼顾检测精度和

计算效率。
首先,提出了一个增强型可变形卷积模块(enhanced

 

deformable
 

convolutional
 

networks
 

v2,EDCNv2)模块对骨

干网络中的C3k2模块进行重构,形成C3k2_EDCNv2。其

中可变形卷积模块(deformable
 

convolutional
 

networks
 

v2,

DCNv2)[9]
 

的普通局部卷积无法捕捉详细上下文信息,故本

文设计了三分支坐标注意力机制(three-branch
 

coordinate
 

attention,TBCA)改进DCNv2结构,使其能够动态地提取

特征。其次,针对颈部上采样的特征重建能力不足问题,引
入内容感知特征重组算子(content-aware

 

reassembly
 

of
 

features,CARAFE)[10],以增强上采样对特征图的感知能

力。最后,采用指数移动平均滑动损失函数(exponential
 

moving
 

average
 

slide
 

loss
 

,
 

EMASlideLoss)[11],优化模型

对正负样本的处理,提升模型的收敛速度。改进的模型结

构如图2所示。

2.1 骨干网络中C3k2的重构

  生活垃圾形态各异,在形状、状态方面具有不稳定性。
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图2 改进的YOLO11网络结构

Fig.2 Network
 

structure
 

of
 

the
 

improved
 

YOLO11

C3k2使用固定卷积核,其感受野难以动态适应生活垃圾目

标的多样形变,故而无法精准捕捉形变区域的细节特征。
针对这一问题,本文设计了EDCNv2来弥补C3k2各尺度

分支间缺乏动态注意力交互的缺点。重构后的 C3k2_

EDCNv2结构图如图3所示。

图3 C3k2_EDCNv2模块

Fig.3 C3k2_EDCNv2
 

module

EDCNv2由本文提出的三分支坐标注意力机制TBCA
改进DCNv2得到,DCNv2模块结构如图4所示。

DCNv2旨在提升模型对几何形变、尺度变化及复杂空

间结构的建模能力,其核心在于可变形卷积的调制机制与

多尺度特征融合。可变形卷积即卷积位置可变,可以更有

效地提取不规则图像的图像特征及边缘信息。可变形卷积

原理可视化如图5所示。
在DCNv2中,传统卷积的固定采样网格被替换为可学

习的偏移量(Δpn )与调制因子(Δmn )。偏移量通过附加

的卷积层从输入特征中预测,使采样点能够自适应目标形

图4 DCNv2模块

Fig.4 DCNv2
 

module

图5 可变形卷积原理可视化

Fig.5 Visualization
 

of
 

the
 

deformable
 

convolution
 

principle

变,数学表达如式(1)所示。

Δpn =Woffset*Fin (1)
其中,Woffset 为偏移预测卷积核,Fin 为输入特征图。

每个采样点pn 会动态偏移到新位置pn+Δpn 从而适应目

标形状。同时,调制因子通过Sigmoid函数约束至[0,1]区
间,输出特征Fout(p0)是加权采样值的总和,如式(2)所示。

p0 是输出位置,wn 是卷积权重,N 是采样点总数。

Fout(p0)=∑
N

n=1
wn ×Fin(p0+pn+Δpn)×Δmn (2)

DCNv2
 

通过并行分支预测多组偏移量与调制因子,分
别捕捉不同尺度下的形变模式。通过特征图通道维度的分

组机制,多尺度形变特征被高效融合,从而提升对复杂场景

的表征能力。
尽管DCNv2通过可变形卷积的调制机制显著提升了

模型对几何形变的建模能力,但DCNv2的偏移量预测依赖

于局部卷积操作,缺乏对全局空间分布的显式建模。调制

因子的生成仅通过单一路径的卷积与Sigmoid函数实现,
未充分融合通道注意力与空间注意力机制。这导致对长距

离依赖关系的捕捉不足,尤其在复杂场景中易受局部噪声

干扰。此外,并行分支间缺乏动态注意力引导的交互机制,
导致特征互补性未充分挖掘。
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本文提出的TBCA通过全局-局部特征联合校准设计,
有效弥补DCNv2的上述缺陷。该模块整合了纵向(H)与
横向(W)方向的双路径平均池化特征,并在通道(channel,

C)层面引入全局通道分支以增强语义表征,最终构建了空

间-通道联合响应的特征建模机制,其结构图如图6所示。

图6 TBCA模块

Fig.6 TBCA
 

module

图6中,纵向池化分支通过平均池化来压缩空间信息,
保留纵向的空间分布特性;横向池化分支与纵向池化分支

对称,通过池化保留横向结构,并通过转置操作使其与垂直

方向特征排列一致来进行拼接操作;全局通道分支采用标

准的全局平均池化,获得整张特征图的全局通道语义,随后

通过卷积进行通道特征重构,使得该分支具备对通道维度

的表达与调控能力。在纵向特征图与横向特征图沿纵向维

度拼接后,通过卷积提取联合空间依赖以获得更具全局建

模能力的空间表示,再将该特征图通过一层卷积,生成两个

方向上的注意力权重。这两个注意力权重作用于对应的空

间池化分支特征,实现方向感知的特征增强。通道分支特

征图通过与空间注意力权重相乘,进一步融合空间与通道

的协同信息,最后将3组注意力分别作用于输入特征图以

形成输出特征。

TBCA通过分离 H 和W 维度的局部池化,保留了空

间结构细节,避免了传统单一路径的维度混淆问题。利用

卷积与Sigmoid生成注意力权重,同时嵌入空间敏感性与

通道重要性,提升了特征选择粒度。全局特征为局部校准

提供了语义先验,局部特征为全局上下文注入空间细节,形
成了闭环优化。

2.2 颈部网络中上采样的改进

  传统YOLO的上采样方法仅利用亚像素邻域信息,无
法捕捉丰富的语义信息。本文将CARAFE集成至YOLO
的上采样层。CARAFE是一种基于内容感知的特征上采

样算子,其核心是通过动态生成适应性重组核与上下文信

息聚合,实现高效且语义敏感的特征重建。

CARAFE结构如图7所示,一方面将通道数为C 的特

征图通过1×1卷积进行压缩降维,得到通道数为Cm 的特

征图,并采用3×3卷积进行内容编码生成初始的重组核。
为有效降低计算复杂度,利用核归一化器在每个空间位置

应用Softmax函数实现权重归一化。另一方面,CARAFE
通过窗口展开操作提取低分辨率特征图的局部邻域信息,
然后利用归一化后的重组核对这些信息进行加权融合,最
终输出细节更丰富的高分辨率特征图。

图7 CARAFE原理图

Fig.7 CARAFE
 

schematic
 

diagram

2.3 损失函数部分的改进

  CIoU(complete
 

intersection
 

over
 

union)是 YOLO11
系列目标检测算法中用于边界框回归的损失函数,它的核

心在于引入中心点距离和长宽比一致性作为惩罚项,来实

现更全面的回归优化。如式(3)所示。

LCIoU =1-IoU+ρ2(b,bgt)
c2 +αv (3)

其中,IoU 为交并比,计算预测框b和真实框bgt 的重

叠区域。ρ2(b,bgt)为预测框与真实框中心点的欧氏距离。

c是最小包围框的对角线长度,v 为长宽比一致性项,
 

α为

自适应权重。CIoU通过联合优化重叠区域、中心点距离和

长宽比提升了回归精度,但其静态权重分配机制无法适应

训练过程中样本质量的变化。在实际垃圾检测任务中

CIoU仍有一定局限性。
为解决这一问题,本文引入EMASlideLoss损失函数。

EMASlideLoss
 

是一种基于动态权重调节的目标检测边界

框回 归 损 失 函 数,其 核 心 由 4部 分 组 成:IoU 损 失 项

(LIoU ),它衡量预测框与真实框的重叠程度;距离损失项

(Ldist)为约束预测框与真实框中心点的欧氏距离;宽高比

损失项(Laspect)为惩罚预测框与真实框的长宽比差异;

EMA平滑项(LEMA )是历史损失指数移动平均值,用于稳

定训练过程。EMASlideLoss函数如式(4)所示。

L =α(t)LIoU +β(t)Ldist+γ(t)Laspect+λ(t)LEMA

(4)
其中,α(t)、β(t)、γ(t)、λ(t)为时变权重系数,通过

EMA-IoU机制动态调整过程如下:
首先,基于历史IoU值的EMA计算当前样本的阈值

Qt,其中
 

η为平滑因子,IoUt 表示当前样本在当前时间步

的交并比。阈值的计算如式(5)所示。

Qt =ηQt-1+(1-η)IoUt (5)
其次,根据样本当前IoU与阈值

 

Qt 的关系划分区域。

设过渡区宽度为Δ,对低IoU区域降低权重,减少低质量
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样本的梯度贡献;对于滑动过渡区域,通过平滑连接低/高
IoU区域避免权重突变;对高IoU样本采取指数衰减权重

的方式防止模型过度优化高IoU样本,增强模型对精确检

测的学习。
上述划分区域规则如式(6)所示,其中αbase 为低质量区

域的基准权重,γ为低质量衰减指数,αmid 为过渡区域起始

权重,λ为高质量衰减系数。

α(t)=αbase(
IoUt

Qt-Δ
)γ, IoU <Qt-Δ

α(t)=αmid+(αhigh-αmid)×

 sin π
2×

IoUt-(Qt-Δ)
2Δ  , Qt+Δ≤IoU≤Qt+Δ

α(t)=αhigh ×e
-λ(IoUt-(Qt+Δ)), IoU >Qt+Δ

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁􀪁

(6)

EMASlideLoss的权重调节机制如图8所示。阈值左

侧为低IoU区域(即低质量区)可能严重偏离物体的定位,
对该区域采用滑动过渡策略平滑处理潜在的难样本;阈值

右侧为样本IoU显著高于阈值的区域,对该区域采用权重

衰减策略,以防止模型过度优化简单样本,从而提升泛化

能力。

图8 EMASlideLoss
 

的权重调制机制

Fig.8 Weight
 

modulation
 

mechanism
 

of
 

EMASlideLoss

3 实验结果与分析

3.1 数据集

  目前的公开生活垃圾检测数据集包括单一白色背景垃

圾数据集TranshNet[12]、户外垃圾数据集Taco[13]、无人机

小目标垃圾数据集 UAVVAste[14]等。本研究考虑生活垃

圾的复杂性及多样性,选择来自2019年华为公司垃圾分类

大赛的公开数据集作为主要的图像数据。该数据集包含一

次性快餐盒、书籍纸张、充电宝、剩饭剩菜等44类生活垃

圾,具有单目标和多目标共14
 

964张垃圾图像。通过统计

各类垃圾的数目,发现本研究采用的44类生活垃圾数据集

存在显著的类别分布不平衡问题,例如陶瓷器皿样本量超

过2
 

000,而金属厨具仅约100。这种长尾分布特性为模型

训练与性能提升带来多重挑战,大量样本类别主导损失函

数优化方向,导致模型过度拟合多数类特征,而对样本稀缺

类别的特征学习不足。
为缓解原始数据集的类别分布不平衡问题,提升模型

泛化能力,本研究通过多源数据融合与数据增强技术对初

始数据集进行扩充与优化。整合数据集 Taco、HGI-30[15]

与GSA2D[16]中的部分图像,并爬取网络垃圾图像,经人工

清洗与标签标准化后,形成跨场景、多样本的初始数据集。
针对样本稀缺类别,采用定向增强策略,通过旋转以及光度

扰动,模拟垃圾在真实环境中的摆放状态与光线分布。经

上述流程,原始数据集图像数量扩充至17
 

885张,标注框

总数达27
 

702个,数据分布均衡性显著改善。
优化后的数据集包含单一背景与复杂背景、单个与多

个目标、户外与室内环境,以及不同尺寸、形状的垃圾样本,
多样化的数据集可提升模型的泛化性,更适应实际应用需

求。数据集示例如图9所示。

图9 优化后的华为云数据集示例

Fig.9 Examples
 

from
 

the
 

optimized
 

Huawei
 

Cloud
 

dataset

优化后数据集分布如图10所示,左上角为各类别实例

数柱状图,可以看出各类别数据分布情况;右上角为边界框

可视化图,展示数据集中目标检测框的分布情况;左下角为

图10 数据集分布图

Fig.10 Distribution
 

of
 

the
 

dataset
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  目标在图像平面上的位置分布热图,颜色深浅表示目标在对

应位置出现的密度;右下角为目标边界框宽高分布热图,颜色

深浅表示具有相应宽高的边界框出现的密度。本文将优化后

的数据集以7∶1∶2的比例分为训练集、验证集和测试集。

3.2 实验配置

  本实验平台采用 Ubuntu20.04操作系统,搭载Intel
(R)

 

Xeon(R)
 

Platinum
 

8474C,主频为
 

800MHz。系统内

存为32
 

GB,显卡为
 

Nvidia
 

GeForce
 

RTX
 

4090,显存容量

为24
 

GB,Pytorch框架版本为
 

2.0.0+cu118,Python版本

为
 

3.8.10。Batch
 

size设置为32,图像大小设置为
 

640×
640,epoch设置为

 

300。网络未使用预训练模型的权重且

所有实验使用一致的超参数训练验证。

3.3 模型评价指标

  在目标检测任务中,评估模型的性能需依赖多维度指

标以全面反映其检测能力与效率。
精确率(precision,

 

P)衡量模型预测为正样本的准确性。
召回率(recall,

 

R)则评估模型对真实目标的覆盖能力。

P =
TP

TP+FP
(7)

R =
TP

TP+FN
(8)

平均精度(average
 

precision,
 

AP)通过计算不同召回

率阈值下的精确率均值,评估模型在特定交并比IoU阈值

下的综合性能。其中,AP@0.5以IoU=0.5为判定标准,广
泛用于衡量宽松匹配场景下的检测能力;而AP@0.5:0.95
则在IoU阈值0.5~0.95范围内取均值,反映模型对严格

定位 要 求 的 适 应 性。平 均 精 度 均 值 (mean
 

average
 

precision,mAP)通过平均所有类别的 AP值,提供全局性

能评估,其中N 为类别总数。

mAP =
1
N∑

N

i=1
APi (9)

实际应用中,还需结合推理速度指标如
 

FPS、计算复杂

度指标GFLOPs和参数量Para,以评估模型在实时性与资

源占用上的适用性。

3.4 对比试验

  1)Backbone改进效果对比

为评估EDCNv2所采用的TBCA对DCNv2的优化效

果,本文对比了简单注意力模块SimAM[17]、混合局部通道

注意力 MLCA[18]、自适应细粒度通道注意力 AFGCA[19]、
上下文锚注意力CAA[20]在优化后的华为云垃圾数据集上

的性能表现。由表1可知,与其他注意力机制相比,基于

TBCA的EDCNv2性能更优。

表1 不同注意力机制的对比

Table
 

1 Comparison
 

of
 

different
 

attention
 

mechanisms
注意力机制(+CARAFE) mAP@0.5/% mAP@0.5:0.95/% P R Para GFLOPs

DCNv2_SimAM 0.751 0.634 0.798 0.682 2
 

783
 

966 6.6
DCNv2_MLCA 0.750 0.654 0.831 0.654 2

 

784
 

002 6.6
DCNv2_AFGCA 0.752 0.639 0.788 0.687 2

 

788
 

526 6.6
DCNv2_CAA 0.755 0.635 0.814 0.671 2

 

796
 

926 6.8
EDCNv2 0.759 0.643 0.816 0.667 2

 

806
 

322 6.6

  表2展示了不同的改进C3k2方法在优化后数据集

上的性能对比结果。使用不同文献中提出的卷积模块

重构C3k2,多样化分支块 DBB[21]通过引入不同结构和

尺寸的卷积分支来增加卷积层的复杂性;细节增强卷积

DEConv[22]通过多尺度特征融合与残差学习来强化高频

细节恢复;全维度动态卷积 ODConv[23]是通过SE注意

力在通道等维度实现动态性来提升模型精度。实验表

明,相较于C3k2及其他改进方法,C3k2_EDCNv2在关

键指 标 上 均 取 得 显 著 提 升:mAP@0.5提 升0.5%,

mAP@0.5:0.95提高0.6%。此外,C3k2_EDCNv2的

Recall提升 至0.691,验 证 了 其 在 复 杂 场 景 下 的 性 能

优势。

表2 C3k2改进模块对比

Table
 

2 Comparison
 

of
 

C3k2
 

improvement
 

variants
卷积块 mAP@0.5/% mAP@0.5:0.95/% P R Para GFLOPs
Baseline 0.747 0.629 0.814 0.661 2

 

590
 

732 6.4
C3k2_DBB 0.740 0.616 0.

 

804 0.657 2
 

590
 

732 6.4
C3k2_DEConv 0.747 0.623 0.790 0.678 2

 

591
 

116 6.4
C3k2_ODConv 0.728 0.597 0.798 0.636 2

 

641
 

098 5.4
C3k2_EDCNv2 0.752 0.635 0.784 0.691 2

 

666
 

218 6.4

2)损失函数效果对比

基于前两个改进,给出损失函数在生活垃圾检测上的

对比实验,实验结果如表3所示。将定位损失替换为平均

极坐 标 距 离 交 并 比 MPDIoU[24]与 形 状 感 知 交 并 比
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ShapeIoU[25]都没有得到很好的检测效果,在SlideLoss[26]

上加入指数移动平均滑动动态调整样本权重,使难样本的

损失贡献更平滑地变化。在参数量与GFLOPs不增加的

同时,mAP50上升0.6%,较其他损失函数表现更优。

表3 不同损失函数对比

Table
 

3 Comparison
 

of
 

different
 

loss
 

functions
损失函数 mAP@0.5/% mAP@0.5:0.95/% P R Para GFLOPs
CIoU 0.759 0.643 0.816 0.667 2

 

806
 

322 6.6
MPDIoU 0.753 0.639 0.811 0.665 2

 

788
 

526 6.6
ShapeIoU 0.759 0.643 0.791 0.699 2

 

806
 

322 6.6
SlideLoss 0.759 0.644 0.811 0.682 2

 

796
 

926 6.8
Ours 0.765 0.646 0.798 0.697 2

 

806
 

322 6.6

  3)与其他算法对比

图11和表4对比了主流目标检测算法在优化后的华

为生 活 垃 圾 数 据 集 上 的 表 现,包 括 YOLO 系 列[27-29]、

SSD[30]及多项基于 YOLO 的目标检测改进方法。SDS-
YOLO[31]是基于 YOLO11部署在移动端的目标检测研

究,FE-YOLO[32]是轻量化模型研究,荀雨薇等[33]是在生

活垃圾检测场景下着力于提升检测准确率。通过对比不

同模型,显示了本文改进算法在生活垃圾检测场景下的适

用性。图11是各算法指标对比图,其中实线为本文算法。
从图11中可以看出,在200轮迭代之前,各算法表现各有

优势;但在200轮后,本文算法始终高于其他算法。由表4
可知,基线模型参数量较小,在此模型上的改进很好地平

衡了精度与轻量化,mAP@0.5达到76.5%(较基线模型

提升1.8%),mAP@0.5:0.95提升至64.6%(较基线模型

提升1.7%)。实验结果表明,改进算法在精度提升与计算

资源占用之间实现了有效平衡。

图11 各算法指标对比图

Fig.11 Performance
 

comparison
 

of
 

different
 

detection
 

algorithms
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表4 本文算法与其他算法的性能对比

Table
 

4 Comparison
 

of
 

different
 

loss
 

functions
模型 mAP@0.5/% mAP@0.5:0.95/% P R Para GFLOPs
SSD 0.705 - 0.723 0.64 29

 

359
 

712 65.037
YOLOv8 0.742 0.612 0.779 0.668 3

 

014
 

228 8.2
YOLOv10 0.743 0.622 0.821 0.657 2

 

711
 

576 6.6
YOLO11n 0.747 0.629 0.814 0.661 2

 

590
 

732 6.4
YOLOv12 0.666 0.529 0.733 0.587 2

 

565
 

308 6.4
SDS-YOLO 0.755 0.635 0.814 0.666 2

 

603
 

084 6.4
FE-YOLO 0.698 0.56 0.747 0.624 2

 

303
 

812 6.1
文献[33] 0.749 0.64 0.778 0.686 7

 

325
 

040 12.8
Ours 0.765 0.646 0.798 0.697 2

 

806
 

322 6.6

3.5 消融实验

  为验证各改进模块的有效性,本文在相同实验条件下

进行了系统的消融实验。实验设置如下:1)采 用 原 始

YOLO11n作为基线模型;2)在基线模型中加入EDCNv2
模块;3)在实验2)基础上引入CARAFE上采样算子;4)在
实验3)基础上进一步整合EMASlideLoss损失函数。

消融实验的结果如表5所示,基线模型在保持轻量化

的同时,取得了mAP50为0.747和mAP50-95为0.629的

基准性能。引入 EDCNv2模块后,检测精度有所提升,

mAP50和mAP50-95分别提高了0.5%和0.6%。继续加

入CARAFE上采样算子后,虽然模型参数量略有增加,但
检测性能进一步提升,mAP50和 mAP50-95分别增长了

1.2%和1.4%。当采用EMASlideLoss损失函数时,模型

性能获得进 一 步 优 化,mAP50和 mAP50-95分 别 提 升

1.8%和1.7%。这一系列实验充分验证了各改进模块的

有效性。

表5 消融实验

Table
 

5 Ablation
 

study
基线模型 EDCNv2 CARAFE EMASlideLoss Param/M GFLOPs mAP@0.5/% mAP@0.5:0.95/%
􀳫 2.59 6.4 0.747 0.629
􀳫 􀳫 2.63 6.3 0.752 0.635
􀳫 􀳫 􀳫 2.80 6.6 0.759 0.643
􀳫 􀳫 􀳫 􀳫 2.80 6.6 0.765 0.646

3.6 检测可视化

  为进一步验证本文改进后的模型对于生活垃圾的检

测性能,采用测试集中的垃圾图像对基线模型和改进模型

进行对比实验,实验检测结果如图12所示。图中第1列为

基线模型在测试集上的检测结果,第2列为改进模型在测

试集上的检测结果。
对比图12第1行的两张图片可知,在对重叠图像的检

测中,改进模型对重叠物体分别做出了识别,但基线模型

只检测出了部分物体;对比图中2行两张图片可知,改进

模型提高了检测物体的精确度,减少了误检的发生;对比

图中第3行可知,改进模型降低了对小目标的漏检;对比

图中第4行可知,改进模型提高物体检测的置信度。综

上,改进算法通过增强的上下文感知模块与动态特征融合

策略,有效提升了重叠物体的区分能力以及检测的精度,
这些改进验证了算法在几何形变适应性与场景泛化性方

面的优势,为复杂环境下的鲁棒检测提供了可靠解决

方案。

图12 YOLO11与改进后的模型检测效果对比

Fig.12 Detection
 

results
 

comparison
 

between
 

YOLO11
 

and
 

the
 

improved
 

model

4 结  论

  本文针对复杂背景下的生活垃圾识别困难、检测精度
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低、人工检测耗时耗力等问题,提出了基于YOLO11的生

活垃圾检测改进算法。基于华为云44类生活垃圾,融合

TACO、HGI-30、GSAD等来源的数据,构建了一个具有复

杂背景的单目标与多目标结合的生活垃圾数据集,使数据

类别得到了均衡。在YOLO11中引入DCNv2模块,并设

计TBCA 注意力机制改进 DCNv2得到 EDCNv2;引入

CARAFE上采样模块与EMASlideLoss损失函数,实现了

模型在生活垃圾数据集上的良好检测性能。与基线模型

相比,mAP-50、mAP50-95分别提升了1.8%、1.7%。综

上,本文提出的基于YOLO11的生活垃圾改进模型在优化

后的华为云生活垃圾数据集上有良好的检测性能,可以用

于基于轻量化的边缘设备的智能垃圾检测分类系统中。
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