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Improved YOLO11-based model for domestic waste detection

Ren Menghan Zhao Haiyan Song Jiazhi
(School of Computer Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China)

Abstract: With the acceleration of urbanization, the continuous increase in domestic waste has posed a severe challenge
to the ecological environment. Therefore, intelligent sorting technology based on target detection has become a key
solution. Aiming at the problems of insufficient accuracy and low deployment efficiency of existing detection models in
complex scenarios. an improved YOLOI11 domestic waste detection model is proposed. By introducing deformable
convolution and a self-designed three-branch coordinate attention mechanism, an enhanced deformable convolution
module is constructed, which is used to reconstruct C3k2 in the backbone network, significantly improving the model’
s feature extraction capability for targets in complex background. In addition, a content-aware feature recombination
operator is adopted to replace the upsampling in the neck network, enhancing the feature reconstruction effect. An
exponential moving average sliding loss function is introduced to improve detection accuracy effectively and accelerate
model convergence. Experiments on the optimized Huawei Cloud domestic waste dataset show that the improved model
achieves 76.5% and 64. 6% in mAP@0. 5 and mAP@0. 5:0. 95 metrics, respectively, with an increase of 1. 8% and
1. 7% compared to the baseline model. Compared with other mainstream detection algorithms, the improved model has
a parameter count of only 2. 8 M, making it more suitable for mobile deployment.
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Fig.1 YOLOI11 network structure
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Fig. 2 Network structure of the improved YOLOI11
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Fig. 5 Visualization of the deformable convolution principle
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&k mAP@0.5/%  mAP@0.5:0.95/% P R Para GFLOPs
Baseline 0. 747 0. 629 0.814 0. 661 2590 732 6.4
C3k2_DBB 0. 740 0.616 0. 804 0.657 2590 732 6.4
C3k2_DEConv 0. 747 0.623 0. 790 0. 678 2591 116 6.4
C3k2_ODConv 0.728 0.597 0.798 0. 636 2 641 098 5.4
C3k2_EDCNwv2 0.752 0. 635 0. 784 0. 691 2 666 218 6.4
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Table 3 Comparison of different loss functions

PR mAP@0.5/%  mAP@0.5:0.95/% P R Para GFLOPs
CloU 0. 759 0. 643 0. 816 0.667 2 806 322 6.6
MPDIoU 0.753 0. 639 0. 811 0. 665 2 788 526 6.6
ShapeloU 0. 759 0. 643 0. 791 0. 699 2 806 322 6.6
SlideLoss 0. 759 0. 644 0.811 0. 682 2 796 926 6.8
Ours 0.765 0. 646 0.798 0. 697 2 806 322 6.6
3) 5 HAb B R b At B 11 RSB LR LR P S AR S

B 11 fER 4 XFET 323 B AR R U5 vk 78 A AL e 1y 4
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Fig. 11

Performance comparison of different detection algorithms
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Table 4
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Comparison of different loss functions

TR mAP@0.5/%  mAP@0.5:0.95/% P R Para GFLOPs

SSD 0. 705 — 0.723 0. 64 29 359 712 65.037
YOLOv8 0. 742 0.612 0.779 0. 668 3014 228 8.2
YOLOv10 0. 743 0. 622 0.821 0. 657 2 711 576 6.6
YOLOI1n 0. 747 0. 629 0.814 0.661 2 590 732 6.4
YOLOv12 0. 666 0.529 0.733 0. 587 2 565 308 6.4
SDS-YOLO 0.755 0. 635 0. 814 0. 666 2 603 084 6.4
FE-YOLO 0. 698 0.56 0. 747 0. 624 2303 812 6.1
HR[33] 0. 749 0. 64 0.778 0. 686 7 325 040 12.8
Ours 0.765 0. 646 0. 798 0. 697 2 806 322 6.6
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Table 5 Ablation study

FLRA  EDCNv2 CARAFE  EMASlideLoss ~ Param/M  GFLOPs mAP®@0.5/% mAP®@0.5:0.95/%
V 2.59 6.4 0. 747 0. 629
Vv v 2.63 6.3 0. 752 0. 635
v v Vv 2. 80 6.6 0.759 0. 643
v v Vv Vv 2. 80 6.6 0.765 0. 646
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