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低成本无人器组合导航滤波算法机制研究
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摘 要:针对低成本无人器在复杂运动环境下的导航精度问题,提出了一种基于多模态运动特性分解的组合导航滤

波算法选择机制。该方法结合卡尔曼滤波与容积卡尔曼滤波,依据无人器运动环境的动态特性选择最优滤波策略;在
低动态环境下,采用卡尔曼滤波提升计算效率;在中等动态环境下,使用容积卡尔曼滤波以增强非线性状态估计能力;
实验基于纯捷联惯性导航系统工具箱,仿真无人机与无人车运动轨迹,验证了所提方法的有效性。结果表明,相较于

传统滤波方法,该算法在无人机场景下位置估计误差降低25%,在无人车场景下计算效率提升50%。
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Abstract:To
 

address
 

the
 

navigation
 

accuracy
 

challenges
 

of
 

low-cost
 

unmanned
 

vehicles
 

in
 

complex
 

motion
 

environments,
 

this
 

paper
 

proposes
 

an
 

integrated
 

navigation
 

filtering
 

algorithm
 

based
 

on
 

multi-modal
 

motion
 

characteristic
 

decomposition.
 

The
 

method
 

combines
 

Kalman
 

Filter
 

and
 

Cubature
 

Kalman
 

Filter
 

dynamically
 

selecting
 

the
 

optimal
 

filtering
 

strategy
 

according
 

to
 

the
 

motion
 

characteristics
 

of
 

the
 

vehicle.
 

In
 

low-dynamic
 

environments,
 

the
 

Kalman
 

Filter
 

is
 

used
 

to
 

improve
 

computational
 

efficiency,
 

while
 

in
 

medium-dynamic
 

environments,
 

the
 

Cubature
 

Kalman
 

Filter
 

is
 

applied
 

to
 

enhance
 

nonlinear
 

state
 

estimation
 

capabilities.
 

The
 

proposed
 

method
 

is
 

validated
 

through
 

simulations
 

using
 

the
 

Precise
 

Strapdown
 

Inertial
 

Navigation
 

System
 

toolbox,
 

analyzing
 

UAV
 

and
 

UGV
 

trajectories.
 

Experimental
 

results
 

show
 

that
 

compared
 

to
 

traditional
 

filtering
 

methods,
 

the
 

proposed
 

algorithm
 

reduces
 

position
 

estimation
 

errors
 

by
 

25%
 

in
 

UAV
 

scenarios
 

and
 

improves
 

computational
 

efficiency
 

by
 

50%
 

in
 

UGV
 

scenarios.
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0 引  言

  近年来,随着现代战争形态向信息化、智能化方向快速

演进,低成本无人飞行器在军事侦察、目标打击、战场监视

等任务中得到广泛应用。在俄乌冲突等典型实战场景中,
大量部署并高频损耗的小型无人飞行器展现出快速响应、
成本低廉与任务可牺牲性强等优势,已成为新型无人作战

体系的重要组成部分。然而,受限于平台体积、成本与能耗

约束,此类无人系统多采用微型传感器与低算力芯片,导致

其导航系统在面对复杂战场环境(如全球导航卫星系统信

号中断、遮挡、高动态机动等)时难以维持足够的稳定性与

精度,严重制约了其作战效能的进一步提升。
如在高精度导航系统中,通常依赖光纤陀螺仪、激光陀

螺仪等高性能惯性器件,结合全球导航卫星系统(global
 

navigation
 

satellite
 

system,
 

GNSS)进行信息融合。但受限

于其高昂成本与系统复杂度,上述方案难以适用于对成本、
批量性与部署效率要求极高的低成本无人平台。当前主流

解决方 案 转 向 基 于 微 机 电 系 统 惯 性 测 量 单 元(micro-
electro-mechanical

 

system
 

inertial
 

measurement
 

unit
 

,

MEMS
 

IMU)与GNSS的组合导航系统。然而,MEMS惯

性测量单元存在零偏不稳定、温漂显著、随机游走严重等问

题,且GNSS信号在复杂环境中也常面临遮挡、中断与低更

新率等限制。在不同行驶阶段(如匀速直线、缓转弯、剧烈

机动)中,系统动态特性和非线性程度差异较大,传统固定

滤波器难以兼顾计算效率与状态估计精度,进一步限制了

其应用可靠性。
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为了提升组合导航系统在不同动态环境下的适应性与

精度,学者们提出了多种改进滤波算法。其中,自适应扩展

卡尔曼滤波(adaptive
 

extended
 

Kalman
 

filter,
 

AEKF)、强
跟踪卡尔曼滤波(strong

 

tracking
 

Kalman
 

filter,
 

STKF)等
方法通过调节噪声协方差或增益参数,有效提升了滤波器

对动态突变与建模误差的适应能力[1-2]。自适应无迹卡尔

曼滤波(adaptive
 

unscented
 

Kalman
 

filter,
 

AUKF)算法也

被广泛研究,通过动态调节过程噪声与测量噪声协方差,有
效提升了系统在非线性与不确定性环境下的估计精度与稳

定性[3-4]。此外,部分研究构建了多滤波器切换机制,依据

系统状态协方差、观测残差或加速度等动态特征[5]。然而,
这类方法大多依赖系统内部状态的实时反馈,缺乏统一、明
确的状态划分建模机制,尤其在如何根据“系统非线性程

度”选择合适滤波器方面尚缺成熟理论框架。
与此同时,人工智能技术也被引入到导航估计任务中。

例如,部 分 研 究 利 用 长 短 期 记 忆 网 络(long
 

short-term
 

memory
 

network,
 

LSTM)对惯性测量误差进行建模,或使用

神经网络估计状态协方差矩阵,实现滤波性能的自适应优

化[6]。但该类方法对训练数据依赖强,泛化能力差,且对算

力资源要求高,难以直接部署于轻量级、低成本导航系统。
为此,本文提出一种组合导航滤波算法选择机制。该机

制通过轨迹曲率间接衡量当前运动状态所对应的系统非线性

程度,该方法并非融合多个滤波器结果,也不依赖深度学习模

型进行选择,而是基于明确划分规则实现最优单一滤波器的

选择。实验基于纯捷联惯性导航系统(pure
 

strapdown
 

inertial
 

navigation
 

system,PSINS)仿真平台进行[7],结果表明该机制在

动态变化条件下能够有效提升估计精度与鲁棒性,为低成本

无人平台的高精度导航提供了可行路径。

1 传统卡尔曼滤波与非线性卡尔曼滤波

1.1 线性卡尔曼滤波

  卡尔曼滤波(Kalman
 

filter,
 

KF)是一种递归算法,基于

贝叶斯估计原理,常用于GNSS与INS数据的融合处理。其

通过对系统状态的预测与观测进行不断修正,能够实现系统

状态的最优估计[8]。主要包括状态更新和量测更新两个阶

段:首先根据系统输出对状态进行预测;然后通过比较预测

值与实际测量值,利用新的测量数据进行状态更新。
卡尔曼滤波的状态和测量模型、更新步骤可表示为:

xk =ϕk-1xk-1+ωk-1

zk =Hkxk +vk

x̂-
k =ϕk-1x̂k-1

P̂-
k =ϕk-1P̂k-1ϕT

k-1+Qk-1

Kk =P̂-
kHT

k(HkP̂-
kHT

k +Rk)-1

x̂k =xk +Kk(zk -Hkx̂-
k)

P̂k = (I-KkHk)P̂-
k

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(1)

其中,xk 为状态向量,ϕk-1 为状态转移矩阵;zk 为测

量向量,Hk 为测量矩阵。Qk 和Rk 分别为过程噪声协方差

矩阵和测量噪声协方差矩阵。x̂-
k 为先验状态估计值,x̂k-1

为上一时刻的后验状态估计值,P̂-
k 为先验状态协方差矩

阵,P̂k-1 为上一时刻的后验状态协方差矩阵。卡尔曼增益

Kk 影响状态更新过程,使新测量值与模型预测值在融合时

具有合理的权重分配,从而优化最终状态估计。

E{ωk}=E{υk}=0
E{ωkυT

k}=0

E{wkwT
k}=

Qk,
 

i=k
0,

 

i≠k 
E{vkvT

k}=
Rk,

 

i=k
0,

 

i≠k 
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(2)

噪声项ωk-1 和vk 为零均值不相关的白噪声序列。卡

尔曼增益的大小受测量噪声协方差Rk 和系统状态协方差

Qk 的影响。如果卡尔曼增益过小,可能会导致估计结果偏

离真实值;增益过大,则可能引发滤波器的发散[9-10]。卡尔

曼滤波算法原理图如图1所示。

图1 卡尔曼滤波算法原理过程

Fig.1 Principle
 

of
 

Kalman
 

filter
 

algorithm

1.2 非线性容积卡尔曼滤波

  在组合导航系统中,由于状态方程和观测方程都是非

线性的,最初的KF算法在处理这类非线性系统时,估计结

果往往不够精确[11]。因此有学者提出容积卡尔曼滤波,容
积卡尔曼滤波(cubature

 

Kalman
 

filter,CKF)的原理是基于

球面积分,通过这种方法对状态空间进行有效的积分,从而

更精确地逼近非线性系统的预测和更新步骤[12-14]。其核心

思想是对系统的状态进行一组采样点(即立方体点或球面

点)的采样,以2n 个等权重求积点之和近似求解加权高斯

积分,
 

所以在处理高维数非线性滤波估计问题时具有更高

的精度和稳定性[15]。

CKF的步骤主要包括预测步骤和更新步骤。

预测步骤:首先计算当前状态估计的均值x̂k|k-1 和协

方差矩阵Pk|k-1。 然后,通过采样点(即立方体点或球面
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点)对状态空间进行离散化。这些采样点是基于状态均值

x̂k|k-1 和协方差矩阵Pk|k-1 生成的,它们覆盖了状态空间的

各种可能性。
生成的采样点为:

σi =x̂k|k-1±α Pk|k-1,i=1,2,…,2n (3)

其中,α 是一个常数,n 是状态向量的维度, Pk|k-1

是协方差矩阵的平方根。
对于每个采样点,利用系统的非线性状态方程进行时

间更新,得到每个采样点的预测状态。最后,通过对所有采

样点的加权平均来得到状态预测的均值和协方差。每个采

样点σi 被代入系统的非线性状态方程进行时间更新,得到

预测的状态x̂(i)
k|k-1,并计算预测的协方差。

x̂k|k-1 =
1
2n∑

2n

i=1
x̂(i)

k|k-1

Pk|k-1 =
1
2n∑

2n

i=1

(x̂(i)
k|k-1-x̂k|k-1)(x̂(i)

k|k-1-x̂k|k-1)T

ẑk|k-1 =
1
2n∑

2n

i=1
H(x̂(i)

k|k-1)

Pzz =
1
2n∑

2n

i=1

(H(x̂(i)
k|k-1)-ẑk|k-1)(H(x̂(i)

k|k-1)-ẑk|k-1)T

Pxz =
1
2n∑

2n

i=1

(x̂(i)
k|k-1-x̂k|k-1)(H(x̂(i)

k|k-1)-ẑk|k-1)T

K =PxzP-1
zz

x̂k|k =x̂k|k-1+K(zk -ẑk|k-1)

Pk|k =Pk|k-1-KPzzKT
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(4)
在预测步骤中,系统首先计算下一时刻的状态向量

x̂k|k-1 和协方差矩阵Pk|k-1;在更新步骤中,通过每个采样

点的预测状态计算相应的观测值,并将其与实际观测值进

行比较。观测值的均值和协方差矩阵分别为ẑk|k-1 和Pzz;
此外,预测的状态与观测之间的协方差矩阵为Pxz,根据这

些量计算卡尔曼增益K,并最终得到更新后的状态估计

x̂k|k 和协方差矩阵Pk|k
[16]。

通过预测和更新两个步骤,CKF能够在非线性系统下

实现状态估计。这一过程的重复迭代,使得CKF逐步逼近

系统的真实状态。CKF算法原理图如图2所示。

1.3 非线性、非高斯粒子滤波

  粒子滤波(particle
 

filter,PF)是一种基于蒙特卡洛方

法的非线性、非高斯系统的递归状态估计算法,其核心原理

是通过随机采样(粒子)来近似描述后验概率分布[17-18]。

PF的核心原理可以分为以下5个步骤:
初始化:在初始时刻,PF通过对系统状态空间进行随

机采样生成一组粒子,每个粒子代表状态空间中的一个可

能状态。每个粒子x(i)
t 和其对应的权重w(i)

t 反映了系统当

前状态的可能性。通常,粒子的初始权重是相等的。

图2 容积卡尔曼滤波算法原理过程

Fig.2 Principle
 

of
 

unscented
 

Kalman
 

filter
 

algorithm

预测(重要性采样):在每一时刻,PF根据系统的动态

模型对粒子进行传播。也就是说,根据上一时刻的状态估

计和系统的运动模型,通过高斯噪声生成下一时刻的粒子。
粒子的位置由状态转移方程描述:

x(i)
t =f(x(i)

t-1,ut)+vk (5)
其中,f(x(i)

t-1,ut)是系统状态转移函数,ut 是控制输

入,vk 是高斯噪声,表示系统的随机变化。
更新(加权):

 

在每一时刻,利用测量值和预测粒子,PF
通过计算每个粒子的权重来反映其与当前测量值的匹配程

度。通过测量模型p(zt|xt),更新粒子的权重:

w(i)
t =p(zt|x(i)

t ) (6)
其中,w(i)

t 是粒子x(i)
t 在时刻t的权重,zt 是当前时刻

的观测数据,p(zt|x(i)
t )是观测模型,描述了粒子状态与

观测数据之间的关系。
重采样:在实际应用中,随着粒子的传播,可能会出现

部分粒子的权重非常小,而部分粒子的权重较大,导致粒子

集中在某些区域,其他区域则无粒子。这种现象叫做“粒子

退化”。为了解决这个问题,PF使用重采样技术。在重采

样步骤中,粒子根据其权重进行抽样,低权重的粒子被丢

弃,高权重的粒子被复制。这样可以保持粒子的多样性,减
少粒子退化的影响,

 

用数值逼近的方法得到系统最优

估计[19]。
估计与输出:经过多次预测、更新和重采样后,粒子滤

波通过加权平均得到系统状态估计:

x̂t =∑
N

i=1
w(i)

t x(i)
t (7)

其中,x̂t 是当前时刻的状态估计,x(i)
t 是第i个粒子的
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位置,w(i)
t 是第i个粒子的权重。粒子滤波算法原理图如

图3所示。

图3 粒子滤波算法原理过程

Fig.3 Principle
 

of
 

particle
 

filter
 

algorithm

2 动态滤波器选择算法

2.1 滤波器选择机制及轨迹曲率判断

  本文提出的滤波器选择机制基于无人器的运动状态进

行自适应选择,以平衡导航精度与计算效率。核心思想是

通过轨迹曲率评估无人器的运动特性,并根据不同动态环

境选用合适的滤波器。低动态环境(直线或缓慢转向运

动):轨迹曲率较低(K≤K1),选用卡尔曼滤波(KF),以减

少计算开销。中等动态环境(一般转弯、爬升等非线性运

动):轨迹曲率介于K1 和K2 之间(K1≤K<K2),选用容

积卡尔曼滤波(CKF),提高非线性状态估计能力。高动态

环境(剧烈机动、急转、避障等):轨迹曲率较高(K≥K2),
理论上适用粒子滤波(PF),但由于其计算复杂度较高,未
来的研究将扩展至PF在高动态场景下的验证与优化。

曲率反映了无人器运动轨迹的非线性变化程度,能够

有效识别直线、转弯、爬升等典型场景。为了验证轨迹曲率

作为动态划分指标的合理性,本文进一步分析了其与速度、
加速度、角速度等其他常见运动参数的关系,并说明其作为

滤波器选择依据的优势:
首先,速度与加速度主要描述运动快慢与变化率,虽然

可反映动态强度,但难以直接区分直线加速与曲线转向等

非线性行为。而角速度往往受到载体姿态变化影响较大,
存在噪声敏感性与方向耦合问题,不易稳定量化轨迹变化

趋势。相比之下,轨迹曲率可从无人器位置序列中直接计

算,具有方向无关性和几何稳定性,适合作为滤波器选择的

主要依据。
其次,实验表明,在大多数典型场景下(如转弯、绕障、

斜爬升等),轨迹曲率变化显著,对动态状态分类具有良好

区分度。因此本文优先采用轨迹曲率作为动态环境量化指

标,以构建简洁稳定的滤波器切换机制。
当然,在未来研究中,考虑将加速度模、角速度变化率

等参数纳入多维状态评估指标体系中,进一步提高滤波器

选择的准确性与鲁棒性。
本文将计算飞行器运动的轨迹曲率,作为选择滤波器

的依据。轨迹曲率反映了飞行器运动的动态变化程度,其
中,轨迹曲率K 由无人器的位置变化率计算得出:

K =|x'y″-y'x″|
(x'2+y'2)3/2

(8)

其中,(x',y')和 (x″,y″)
 

分别是轨迹的一阶和二阶

导数。设定阈值和用于滤波器选择,不同环境下的参数设

定值分别为K1=0.01和K2=0.1。实际应用中,这些阈

值可通过实验调整,以适应不同无人器的动力学特性。滤

波器选择机制如图4所示。

图4 动态滤波器选择机制

Fig.4 Dynamic
 

filter
 

selection
 

mechanism

此滤波器选择机制根据轨迹曲率值k 设定3个阈值:
当K ≤0.05时,选择卡尔曼滤波器(KF);当0.05<K ≤
0.2时,选择容积卡尔曼滤波器(CKF);当K >0.02时,理
论上选择粒子滤波器(PF),但本研究暂未启用PF分支,保
留扩展接口。

2.2 不同滤波器的计算复杂度对比

  由于不同滤波器的计算开销不同,本文对KF、CKF和

PF在状态更新过程的计算复杂度进行了对比,如表1
所示。

表1 不同滤波器的计算复杂度对比

Table
 

1 Comparison
 

of
 

computational
 

complexity
 

of
 

different
 

filters
滤波

方法
适用场景

时间复杂度

(Big-O
 

notation)
主要计算

开销

KF 低动态 O(n2) 矩阵乘法、逆运算

CKF 中等动态 O(n3) 立方体采样点计算

PF 高动态 O(Mn2)(M为粒子数) 重采样
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  KF计算复杂度最低,仅需进行矩阵运算,适用于低动

态环境;CKF需要计算2n 个采样点,并进行非线性变换,
计算开销较

 

KF
 

高,但能更好处理非线性问题;PF计算复

杂度最高,与粒子数
 

M 成正比,不适用于计算资源受限的

应用。

3 实验仿真设计和结果

3.1 实验设计

  本研究运用MATLAB
 

2023a开展仿真实验,组合导航

仿真依托PSINS工具箱[4],该工具箱具备
 

SINS/GNSS组

合导航建模功能。不过,原始的PSINS工具箱缺乏轨迹曲

率评估以及滤波器自适应选择机制,且其自带的PF算法

存在缺陷。鉴于此,本文在该工具箱基础上,新增了轨迹曲

率计算模块和滤波器选择策略,对PF算法存在的问题进

行了调试与优化,并提出了使其能够正常运行进行仿真

实验。
为验证所提出的滤波器选择机制在不同运动环境下的

有效性。仿真过程中,设定了典型的无人机和无人车运动

轨迹,并基于实际传感器特性构建IMU/GNSS误差模型。

1)IMU误差模型

惯性测量单元(IMU)误差来源包括零偏漂移、随机游

走噪声等,本文根据常见低成本 MEMS传感器的典型参数

进行建模,具体参数如表2所示。

表2 IMU
 

误差模型参数

Table
 

2 Parameters
 

of
 

IMU
 

error
 

model

参数 数值 单位

加速度计零偏误差 0.05 m/s2

陀螺仪零偏误差 110 deg/h
加速度计随机游走噪声 0.003 m/s2/ Hz
陀螺仪随机游走噪声 5 deg/h

  IMU采样率设定为100
 

Hz,仿真过程中,对加速度和

角速度数据加入上述误差,以模拟低成本惯性传感器的真

实误差特性。

2)GNSS
 

误差模型

GNSS误差主要受信号遮挡、电离层延迟、多路径效应

等影响。本文设定GNSS采样频率为1Hz,并在测量数据

中引入随机噪声,以模拟实际
 

GNSS
 

观测误差,具体参数

如表3所示。

表3 GNSS
 

误差模型参数

Table
 

3 Parameters
 

of
 

GNSS
 

error
 

model

参数 数值/m
水平位置误差 1.0
垂直位置误差 2.0

速度误差 0.1

  3)无人机/无人车运动轨迹

仿真实验分别构建了无人机和无人车的典型运动轨

迹,并通过
 

IMU+GNSS
 

数据进行融合。无人机轨迹包括

匀速飞行、加速飞行、爬升、转向等运动模式,轨迹生成参数

如表4所示。

表4 无人机轨迹仿真实验数据

Table
 

4 Simulation
 

data
 

of
 

UAV
 

trajectory

飞行阶段 类型
持续

时间/s

加速度/
(m·s-2)

滚转

时间/s
1 匀速 80 0 0
2 加速 20 1 0
3 匀速 80 0 0
4 左转 45 2 4
5 匀速 80 0 0
6 右转 50 9 4
7 匀速 80 0 0
8 爬升 10 2 0
9 匀速 80 0 0
10 下降 10 2 0
11 匀速 80 0 0
12 减速 5 2 0
13 匀速 80 0 0

  无人车轨迹包括直行、加速、转弯、爬坡等七种场景。
轨迹生成参数如表5所示。

表5 无人车轨迹仿真实验数据

Table
 

5 Simulation
 

data
 

of
 

UGV
 

trajectory

行驶阶段 类型
持续时间/

s

加速度/
(m·s-2)

角速度/
(rad·s-1)

1 匀速 200 0 0
2 加速 20 1.5 0
3 右转 10 0 0
4 减速 10 3 0
5 爬坡 15 1.5 0
6 右转 10 0 0
7 下坡 10 0 0

  为了验证所提出的动态滤波器选择机制的有效性,本
文设计了以下实验:采用无人机、无人车仿真数据作为实验

数据,分别在典型运动环境:低动态环境和中等动态环境。
其中低动态环境:无人器以低速平稳飞行,模拟城市巡航或

农田巡检场景。
实验 通 过 对 上 面 的 实 验 数 据 参 数 设 置 之 后,在

MATLAB仿真生成一段无人机运动轨迹,用于测试导航

算法的性能,无人机轨迹仿真如图5所示。
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图5 无人机轨迹仿真图

Fig.5 UAV
 

trajectory
 

simulation

其次,生成无人车(轨迹)的仿真数据,用于测试车辆导

航算法的性能。轨迹的初始速度为10
 

m/s,采样间隔为

0.1
 

s,共包括8个行驶阶段。这些设置使得仿真实验更加

贴近实际场景,能够有效验证导航算法在噪声环境下的鲁

棒性和精度。在 MATLAB仿真生成运动轨迹,无人车轨

迹仿真如图6所示。

图6 无人车轨迹仿真图

Fig.6 UGV
 

trajectory
 

simulation

3.2 实验结果

  1)实验场景-无人车

在此场景下,模拟当无人车的轨迹动态线性程度比较

高时,通过实验发现,滤波方法选择了普通卡尔曼滤波器

(KF)。普通卡尔曼滤波算法能够处理线性化程度高的系

统。实验是基于卡尔曼滤波算法(KF)的15维状态(姿态、
速度、位置、加速度计误差、陀螺误差)状态SINS/GPS组合

导航系统仿真,通过加载轨迹数据并添加IMU误差。在仿

真过程中,利用IMU数据更新INS状态,并通过GPS位置

观测修正KF估计。最终输出导航结果并绘制误差曲线,
验证了KF在强线性系统中的估计精度和鲁棒性。同时,

实验对比分析了在没有滤波选择机制时,容积卡尔曼滤波

和粒子滤波对无人机位置误差估计。在实验中,为了更好

验证算法机制的优越性,绘制了无人车滤波前位置误差图,
如图7所示,以此图为对照进行滤波前后对比分析。为量

化滤波效果的稳定性,本文引入收敛速度指标,定义为系统

位置误差首次小于0.5
 

m(用实心小正方形标注坐标点)并
持续200

 

s的时间点,作为判断滤波器状态稳定的依据。
无人机卡尔曼滤波位置误差如图8所示,其中点线曲线、点
划线曲线、虚线曲线分别代表经度、纬度、高度的变化。实

验结果表明,在选择了卡尔曼滤波算法时经度、维度收敛速

度相对于容积卡尔曼滤波算法提升了约62%,同时维度误

差,仍能保持在较小的误差范围之内,而容积卡尔曼滤波收

敛速度慢,粒子滤波位置误差估计始终大于0.5
 

m,所以此

时更适用KF进行算法估计。图9和图10分别是无人车

卡尔曼滤波位置误差和无人机粒子滤波位置误差,相对于

卡尔曼滤波算法误差高度收敛较慢,误差较大。此外,从
图8~10中可观察到,在约200~250

 

s的时间段,无人车

纬度误差出现较明显的波动。这一现象主要源于车辆在此

时段进入动态转弯及爬坡阶段,惯性导航误差迅速积累,而
GNSS更新频率较低(1

 

Hz)导致估计无法及时修正,造成

纬度方向的误差突增。

图7 无人车滤波前位置误差

Fig.7 UGV
 

position
 

error
 

before
 

filtering

图8 无人车卡尔曼滤波位置误差

Fig.8 UGV
 

position
 

error
 

with
 

Kalman
 

filter

图9 无人车粒子滤波位置误差

Fig.9 UGV
 

position
 

error
 

with
 

particle
 

filter
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图10 无人车容积卡尔曼滤波位置误差

Fig.10 UGV
 

position
 

error
 

with
 

unscented
 

Kalman
 

filter

2)实验场景-无人机

根据计算得到的轨迹曲率,系统将动态选择适合的滤

波器。在本次实验中,当无人机轨迹变化较大且飞行状态

较为不是特别平稳时,选择CKF。中等曲率基于CKF的

15维状态(姿态、速度、位置、加速度计误差、陀螺误差)

SINS/GPS组合导航系统仿真。通过加载轨迹数据并添加

IMU误差,初始化INS和CKF。在仿真过程中,利用IMU
数据更新INS状态,并通过GPS位置观测修正 KF估计,
最终输出导航结果并绘制误差曲线,验证了系统在动态环

境下的估计精度和鲁棒性。在实验中,为了更好验证算法

机制的优越性,绘制了无人机滤波前位置误差图,如图11
所示,以此图为对照进行滤波前后对比分析。为量化滤波

效果的稳定性,在此也引入收敛速度指标,定义为系统位置

误差首次小于0.5
 

m(用实心小正方形标注坐标点)并持续

200
 

s的时间点,作为判断滤波器状态稳定的依据。无人机

容积卡尔曼滤波位置误差如图12所示,其中点线曲线、点
划线曲线、虚线曲线分别代表经度,纬度、高度的变化。同

时,本文对比分析了在没有滤波选择机制时,KF和PF对

无人机位置误差估计。实验结果表明,在选择了CKF时高

度误差缩小了约40%,同时经度和维度误差,仍能保持在

较小的误差范围之内,所以此时更适用CKF进行算法估

计。图13和图14分别是无人机卡尔曼滤波位置误差和无

人机粒子滤波位置误差,相对于CKF误差高度收敛较慢,
误差较大。类似地,图12~14中,无人机在约100

 

s时段开

始进入剧烈爬升与转向阶段,飞行轨迹发生突变,导致系统

非线性增强,此时使用KF等线性滤波器时难以有效建模

系统状态,进而使纬度估计偏差增大。尽管CKF在该时段

表现优于KF和PF,但仍受到系统动态复杂度与噪声扰动

的共同影响。该现象表明,在快速动态变化阶段,滤波器应

具备更强的非线性建模与观测适应能力,这也为后续研究

探索高动态条件下PF或混合滤波方法的改进提供了参考

依据。

3.3 结果分析

  在MATLAB
 

2023a平台上,对本文所用的滤波器迭代

过程进行运行时间测试。结果显示,KF每次滤波处理平

均耗时为0.0221
 

ms,CKF平均耗时为0.4282
 

ms,两者均

远低于嵌入式系统常见的10
 

ms控制周期,PF每次滤波运

行平均耗时为
 

12.49
 

ms(粒子数为10
 

000),在不做并行加

图11 无人机滤波前位置误差

Fig.11 UAV
 

position
 

error
 

before
 

filtering

图12 无人机容积卡尔曼滤波位置误差

Fig.12 UAV
 

position
 

error
 

with
 

unscented
 

Kalman
 

filter

图13 无人机卡尔曼滤波位置误差

Fig.13 UAV
 

position
 

error
 

with
 

Kalman
 

filter

图14 无人机粒子滤波位置误差

Fig.14 UAV
 

position
 

error
 

with
 

particle
 

filter

速的情况下已接近常见嵌入式处理周期上限,说明在复杂

动态环境下部署PF策略需配合降采样、并行化或粒子数

压缩等优化手段,以满足实时处理需求。此上说明本文所

提出的滤波器选择机制具备良好的实时性,适合部署在如

STM32H7、ARM
 

Cortex-A
 

系列等资源受限的嵌入式平台

中。实验结果表明,低动态环境下,本方法能有效降低误

差。在静态环境下,卡尔曼滤波器(KF)表现出较高的计算

效率和定位精度,定位误差在0.1
 

m以内;容积卡尔曼滤波

器(CKF)的精度与KF相当,但由于其非线性处理特性,计
算复杂度略高。在低动态环境下(如匀速直线运动),KF
的表现优于CKF,定位误差较CKF降低了约20%。在中

等动态环境下(如无人机机动飞行),CKF的定位精度保持

稳定,误差较KF进一步降低至30%。在静态和低动态线
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性环境下(如无人车巡航),KF能够以高计算效率实现定

位精度;在低动态和中等动态非线性环境下(如无人机转

弯、爬升),CKF通过球面容积准则有效处理系统非线性,
定位误差较KF显著降低;基于运动状态(如轨迹曲率)的
自适应滤波器选择策略,能够平衡精度与计算效率,在静

态、低动态和中等动态环境下均实现最优性能。未来研究

可进一步探索高动态复杂环境(如高速避障、剧烈机动)下
的滤波器优化方案,例如结合PF等非线性估计方法。

4 结  论

  本文提出了一种基于轨迹曲率的滤波器自适应调整策

略,可在不同运动环境下动态选择合适的滤波器(如KF与

CKF),实现导航精度与计算效率的协同优化。实验结果表

明,该动态选择机制在静态、低动态及中等动态环境中均表

现出良好性能:在静态和低动态线性场景中,KF以较低计

算开销实现较高定位精度;而在中等动态、非线性场景中,

CKF通过更精确的非线性状态估计将定位误差较 KF降

低约20%~30%。该机制有效提升了低成本无人系统在

复杂环境中的导航准确性与实时性。
进一步的研究工作可从以下两个方面展开:其一,融合

视觉传感器、激光雷达等多源感知信息,构建冗余观测体

系,以提升观测质量并降低对低性能IMU误差的敏感性;
其二,针对高动态复杂场景(如高速避障与剧烈机动),探索

粒子滤波(PF)等非线性估计算法的轻量化设计,在保障估

计精度的同时优化实时性。这些改进将进一步推动动态滤

波器选择机制在更广泛实际应用场景中的部署与落地。

参考文献

[1] 张庭芳,凌勇,谢世坤,等.自适应扩展卡尔曼滤波在车

辆状态估计中的优化研究[J].井冈山大学学报(自然

科学版),2025,46(2):89-96.
ZHANG

 

T
 

F,
 

LING
 

Y,
 

XIE
 

SH
 

K,
 

et
 

al.
 

Optimization
 

research
 

of
 

adaptive
 

extended
 

kalman
 

filter
 

in
 

vehicle
 

state
 

estimation[J].
 

Journal
 

of
 

Jinggangshan
 

University(Natural
 

Science
 

Edition),
 

2025,
 

46(2):
 

89-96.
[2] 陈雨,王健博,张凌东,等.基于强跟踪滤波的捷联惯

导/里程计组合导航[J].现代防御技术,2018,46(4):

27-32,98.
CHEN

 

Y,
 

WANG
 

J
 

B,
 

ZHANG
 

L
 

D,
 

et
 

al.
 

Integrated
 

navigation
 

of
 

strapdown
 

inertial
 

navigation
 

system/odometer
 

based
 

on
 

strong
 

tracking
 

filter[J].
 

Modern
 

Defense
 

Technology,
 

2018,
 

46(4):
 

27-32,98.
[3] 荆蕾,林 雪 原,潘 新 龙,等.基 于 改 进 Sage-Husa的

GNSS/SINS组合导航系统自适应 UKF算法[J].中国

空间科学技术,2024,44(5):127-135.
JING

 

L,
 

LIN
 

X
 

Y,
 

PAN
 

X
 

L,
 

et
 

al.
 

Adaptive
 

UKF
 

algorithm
 

for
 

GNSS/SINS
 

integrated
 

navigation
 

system
 

based
 

on
 

improved
 

Sage-Husa[J].
 

Chinese
 

Journal
 

of
 

Space
 

Science
 

and
 

Technology,
 

2024,
 

44(5):
 

127-135.
[4] 刘军,吴贤勇,田甜.基于 AUKF的SINS/GPS紧组合

导航 系 统 研 究 [J].电 子 测 量 与 仪 器 学 报,2020,

37(11):97-102.
LIU

 

J,
 

WU
 

X
 

Y,
 

TIAN
 

T.
 

Research
 

on
 

SINS/GPS
 

tight
 

integration
 

navigation
 

system
 

based
 

on
 

AUKF[J].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2020,
 

37(11):
 

97-102.
[5] AKHLAGHI

 

S,
 

ZHOU
 

N,
 

HUANG
 

Z.
 

Adaptive
 

adjustment
 

of
 

noise
 

covariance
 

in
 

Kalman
 

filter
 

for
 

dynamic
 

state
 

estimation[C].2017
 

IEEE
 

Power
 

&
 

Energy
 

Society
 

General
 

Meeting,
 

2017:
 

1-5.
[6] 刘傲.基于长短期记忆网络的INS/GNSS协同导航方

法研究[D].沈阳:辽宁工程技术大学,2024.
LIU

 

AO.
 

Research
 

on
 

INS/GNSS
 

integrated
 

navigation
 

method
 

based
 

on
 

long
 

short-term
 

memory
 

network [D ].
 

Shenyang:
 

Liaoning
 

Technical
 

University,
 

2024.
[7] 严恭敏,王书军.PSINS:惯性导航系 统 仿 真 测 试 的

MATLAB 工 具 箱 [J].航 空 学 报,2018,39(5):

1234-1245.
YAN

 

G
 

M,
 

WANG
 

SH
 

J.
 

PSINS:
 

A
 

MATLAB
 

toolbox
 

for
 

inertial
 

navigation
 

system
 

simulation
 

and
 

testing[J].
 

Chinese
 

Journal
 

of
 

Aeronautics,
 

2018,
 

39(5):
 

1234-1245.
[8] 田广亮,张丽杰,李志宇.SVR辅助改进鲁棒卡尔曼滤

波的 UWB/INS组 合 定 位 方 法[J].电 子 测 量 技 术,

2022,45(3):79-84.
TIAN

 

G
 

L,
 

ZHANG
 

L
 

J,
 

LI
 

ZH
 

Y.
 

UWB/INS
 

integrated
 

positioning
 

method
 

based
 

on
 

SVR-assisted
 

improved
 

robust
 

Kalman
 

filter [J].
 

Electronic
 

Measurement
 

Technology,
 

2022,
 

45(3):
 

79-84.
[9] 王金柱,李骏驰,董亮.复杂环境下基于 BP-EKF的

UWB-IMU定位方法[J].自动化技术与应用,2021,

40(4):19-23.
WANG

 

J
 

ZH,
 

LI
 

J
 

CH,
 

DONG
 

L.
 

UWB-IMU
 

positioning
 

method
 

based
 

on
 

BP-EKF
 

in
 

complex
 

environments [J].
 

Automation
 

Technology
 

and
 

Applications,
 

2021,
 

40(4):
 

19-23.
[10] 李晓明,赵长胜,谭兴龙.改进的容积卡尔曼滤波的组合

导航定位算法[J].测绘科学,2020,
 

45(9):25-30,36.
LI

 

X
 

M,
 

ZHAO
 

CH
 

SH,
 

TAN
 

X
 

L.
 

Improved
 

cubature
 

Kalman
 

filter-based
 

integrated
 

navigation
 

and
 

positioning
 

algorithm [J].
 

Geomatics
 

Science
 

and
 

Technology,
 

2020,
 

45(9):
 

25-30,36.
[11] 张学军,谭元晧,李雪缘,等.星基 ADS-B系统及关键

·86·



 

阳 显
 

等:低成本无人器组合导航滤波算法机制研究 第1期

技术发 展 综 述[J].北 京 航 空 航 天 大 学 学 报,2022,

48(9):1589-1604.
ZHANG

 

X
 

J,
 

TAN
 

Y
 

H,
 

LI
 

X
 

Y,
 

et
 

al.
 

Overview
 

of
 

satellite-based
 

ADS-B
 

system
 

and
 

key
 

technology
 

development[J].
 

Journal
 

of
 

Beihang
 

University,
 

2022,
 

48(9):
 

1589-1604.
[12] 张贺,秦伟伟,周城,等.运用信息融合式高阶 UKF的

微小卫 星 姿 态 确 定 算 法[J].空 间 科 学 学 报,2020,

40(6):1091-1101.
ZHANG

 

H,
 

QIN
 

W
 

W,
 

ZHOU
 

CH,
 

et
 

al.
 

Attitude
 

determination
 

algorithm
 

for
 

microsatellite
 

based
 

on
 

high-order
 

UKF
 

using
 

information
 

fusion[J].
 

Chinese
 

Journal
 

of
 

Space
 

Science,
 

2020,
 

40(6):
 

1091-1101.
[13] 张晓林,汪俊,严天宏,等.基于改进CKF算法的AUV

组合导航系统研究[J].舰船科学技术,2025,47(5):

37-42.
ZHANG

 

X
 

L,
 

WANG
 

J,
 

YAN
 

T
 

H,
 

et
 

al.
 

Research
 

on
 

AUV
 

integrated
 

navigation
 

system
 

based
 

on
 

improved
 

CKF
 

algorithm [J].
 

Ship
 

Science
 

and
 

Technology,
 

2025,
 

47(5):
 

37-42.
[14] ZHANG

 

Y
 

G,
 

XU
 

G,
 

LIU
 

X.
 

An
 

improved
 

SINS
 

alignment
 

method
 

based
 

on
 

adaptive
 

cubature
 

kalman
 

filter[J].
 

Sensors,
 

2019,
 

19(24):
 

5509.
[15] 丁家琳,肖建,赵涛.自适应CKF强跟踪滤波器及其应

用[J].电机与控制学报,2015,19(11):110-120.
DING

 

J
 

L,
 

XIAO
 

J,
 

ZHAO
 

T.
 

Adaptive
 

CKF
 

strong
 

tracking
 

filter
 

and
 

its
 

application[J].
 

Journal
 

of
 

Electric
 

Machines
 

and
 

Control,
 

2015,
 

19 (11):
 

110-120.

[16] 任萍,卢允娥.一种基于 ADS-B的空域态势监视系统

设计方法研究[J].中国设备工程,2021(22):105-107.
REN

 

P,
 

LU
 

Y
 

E.
 

Research
 

on
 

the
 

design
 

method
 

of
 

airspace
 

situation
 

awareness
 

system
 

based
 

on
 

ADS-B[J].
 

China
 

Equipment
 

Engineering,
 

2021(22):
 

105-107.
[17] 李磊,高嵩,陈超波.粒子滤波综述[J].国外电子测量

技术,2020,39(6):6-12.
LI

 

L,
 

GAO
 

S,
 

CHEN
 

CH
 

B.
 

Overview
 

of
 

particle
 

filtering [J].
 

Foreign
 

Electronic
 

Measurement
 

Technology,
 

2020,
 

39(6):
 

6-12.
[18] 江健,李伟峰,姚健,等.改进的粒子滤波算法在船用组

合导航中的应用[J].上海海事大学学报,2018,39(2):

17-21,65.
JIANG

 

J,
 

LI
 

W
 

F,
 

YAO
 

J,
 

et
 

al.
 

Application
 

of
 

improved
 

particle
 

filter
 

algorithm
 

in
 

marine
 

integrated
 

navigation [J].
 

Journal
 

of
 

Shanghai
 

Maritime
 

University,
 

2018,
 

39(2):
 

17-21,65.
[19] 田真.多目标检测前跟踪的粒子滤波算法研究[D].成

都:电子科技大学,2019.
TIAN

 

ZH.
 

Research
 

on
 

particle
 

filter
 

algorithm
 

for
 

tracking-before-detection
 

of
 

multiple
 

targets[D].
Chengdu:University

 

of
 

Electronic
 

Science
 

and
 

Technology
 

of
 

China,
 

2019.
作者简介

阳显(通信作者),硕士研究生,主要研究方向为组合导航

与控制。

E-mail:
 

1140632348@qq.com
杨远超,副教授,主要研究方向为导航制导与控制,复杂

航空和能源系统优化与控制。

·96·


