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Multi-modal 3D object detection based on pseudo point cloud fusion

Li Xu' Zhang Yonghong'* Zhu Linglong® Kan Xi*
(1. School of Automation, Nanjing University of Information Science and Technology,Nanjing 210044, China;

2. School of Internet Engineering, Wuxi University, Wuxi 214105, China)

Abstract: To address the inevitable limitations of current LiDAR-only 3D detection methods, which are affected by
point cloud sparsity—where LiDAR-scanned point clouds exhibit significantly higher sparsity at long range compared to
short range, leading to imbalanced positive and negative samples during model training—we propose a novel multi-
modal framework named MCA-VoxelNet, based on pseudo-point-cloud fusion. It consists of two key designs: the
pseudo-point clouds generated by depth completion are utilized to solve the problem of point cloud sparsity, and a large
number of nearby redundant voxels are discarded through the distance-aware sampling module to enhance computational
efficiency; a multi-stage cascaded attention detection structure is employed to aggregate the target features of multiple
detection stages, balance the number of positive and negative samples, and gradually improve the region proposals
output by the Region Proposal Network. Experiments on the authoritative KITTI autonomous driving dataset
demonstrate that MCA-VoxelNet achieves an inference speed of 17.54 FPS and attains car detection accuracies of
94.19% ., 85.93%, and 86.17% on the easy. moderate, and hard difficulty levels, respectively. These results
outperform the second-best method by 2. 64%, 1.16% ., and 1. 91 %.
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Fig. 2 Depth completion network structure diagram
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Table 4 The results of comparative experiments on the KITTI test set %

- . _ Car 3D AkP(R40) ' _ Car BEV ixP (R40) ‘

18] £ 4 I X TRj 2R &g I ¥
PV-RCNN LiDAR 90. 25 81.43 76. 82 94. 98 86. 14 90. 65
Voxel-RCNN LiDAR 90. 90 81. 62 77.06 94. 85 88. 83 86. 13
SE-SSD LiDAR 91. 49 82. 54 77.15 95. 68 91. 84 86. 72
SFD LiDAR+RGB 91.73 84. 76 77. 92 95. 64 91. 85 86. 83
VPFNet"™" LiDAR-+RGB 91.02 83.21 78. 20 93. 94 90. 52 86. 25
TED-MM" LiDAR+RGB 91.55 84.48 84. 26 95. 42 91.93 88.11
Ours LiDAR+RGB 94.19 85.92 86.17 95. 41 91.72 91.92
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Fig. 5 Visualization result comparison
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Table 5 Results of ablation experiments
Car 3D AP(R40)/ %
0L 25 =930 1P e MCA — - FPS
fij £ &g ] 3
X X X 90. 8340. 14 81.5540.17 77.1340. 20 25.1240. 11
J X X 93.2140.12 85.2440.13 82.67+0. 15 21. 874+0. 09
J J X 93.1140. 11 85.37+0.15 82.65+0. 18 24.054+0. 13
X X J 92.98+0. 10 86.2240. 14 81.9140. 16 18.704+0. 08
N N N 94.13+0. 14 86.01-0. 09 86.05+0. 16 17.42+0. 10

Voxel-RCNN 1B ILLLBEA M T — M EFHEB W
R Sk AR, L 4 SR AN 2 6 TR, Al LA B fa) B A4 TR
FIE5H I AR Ok M AR B TE L B L 8 i A £ B BE
I A 7 A 00 Sk, ARG U R 7 T SR L o S R R o R BT L
HARTFE T 93.85% .86. 83 % il 86.13% , X & [H & MCA
Tl Tk A AS [EAG I B BE Y E AR RRAE , DT 7E 5 2 56 B 1Y
Yo e Sl T L R A I AR
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Table 6 Comparison results of different attention methods

%
Car 3D AP(R40)
Jrik — - —
TR B 4 i3 1y
ERES= LKl 93.03 86.31 81.85 87.06
ZMB RS S 93.85 86.83  86.13  89.94

N T WESE 2 W B 9 Ik 1 T 0 G 5 4 b i) 4 Y B
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i HT 3,45 =S B B ity A 00 4 R A0 It 43T, HL 3 47 e ] 40
B L TE IR HR 3 A~ G5 B B vl L 3k 3 a5 e 190K B2 %
AU
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Table 7 Ablation experiment results using different

numbers of cascade refinement stages

PELBY Car 3D AP(R40)/ % EATHT A/
Bk fi 5 rh 4§ I e ms
1 93. 28 85. 14 84.97 60. 45
2 93. 79 85. 60 85. 52 68. 92
3 94. 10 85.93 86. 06 72.89
4 93. 94 85. 74 85. 89 88. 61
5 94.19 85. 88 85. 06 113.27
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Table 8 Influence of different sampling methods on

detection performance %
Car 3D AP(R40)
7‘5‘?2 i o
fRj HL 4 PRI T3
BEHLE S RAE 80.95 62.47 57. 87 67.10
PR B RRAIRFE  92.99 85. 87 83.52 87. 46
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Fig. 6 Input voxel sampling rate gradient effect

curve on detection accuracy and FPS
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Table 9 Comparison of detection accuracy for pedestrians and cyclists %
. Pedestrian 3D AP(R40) Cyclist 3D AP(R40)
s ik i HAE T i i e FH
Voxel-RCNN 69. 23 64.51 55. 78 63.17 88.42 72.77 65. 29 75.49
MCA-VoxelNet 73.88 66. 57 59.92 66.79 92.25 72.70 68. 13 77. 69
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Table 10 Comparison of running time results for
different methods
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Fig. 10 Visualization of CADC dataset inspection results
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