
  电 子 测 量 技 术

ELECTRONIC MEASUREMENT TECHNOLOGY
第49卷 第1期

2026年1月 

DOI:10.19651/j.cnki.emt.2518691

基于伪点云融合的多模态三维目标检测方法*
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摘 要:针对目前的纯激光雷达三维检测方法不可避免地受到点云稀疏性的影响,且激光雷达扫描得到的点云数据

在远距离表现比近距离更加稀疏导致模型训练过程中正负样本不均衡的问题,提出一种新的基于伪点云融合的多模

态框架 MCA-VoxelNet,它由两个关键设计组成:利用深度补全产生的伪点云来解决点云稀疏性问题,并且通过距离

感知采样模块丢弃大量附近的冗余体素来提高计算效率;利用多阶段级联注意力检测结构聚合多个检测阶段的目标

特征,平衡正负样本数量并逐步完善RPN网络输出的区域建议。在权威的KITTI自动驾驶数据集上的实验结果表

明,MCA-VoxelNet以17.54的FPS在简单、中等和困难三个难度类别上的汽车精度分别达到94.19%、85.93%和

86.17%,比次优的方法分别高出2.64%、1.16%和1.91%。
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Abstract:To
 

address
 

the
 

inevitable
 

limitations
 

of
 

current
 

LiDAR-only
 

3D
 

detection
 

methods,
 

which
 

are
 

affected
 

by
 

point
 

cloud
 

sparsity—where
 

LiDAR-scanned
 

point
 

clouds
 

exhibit
 

significantly
 

higher
 

sparsity
 

at
 

long
 

range
 

compared
 

to
 

short
 

range,
 

leading
 

to
 

imbalanced
 

positive
 

and
 

negative
 

samples
 

during
 

model
 

training—we
 

propose
 

a
 

novel
 

multi-
modal

 

framework
 

named
 

MCA-VoxelNet,
 

based
 

on
 

pseudo-point-cloud
 

fusion.It
 

consists
 

of
 

two
 

key
 

designs:
 

the
 

pseudo-point
 

clouds
 

generated
 

by
 

depth
 

completion
 

are
 

utilized
 

to
 

solve
 

the
 

problem
 

of
 

point
 

cloud
 

sparsity,
 

and
 

a
 

large
 

number
 

of
 

nearby
 

redundant
 

voxels
 

are
 

discarded
 

through
 

the
 

distance-aware
 

sampling
 

module
 

to
 

enhance
 

computational
 

efficiency;
 

a
 

multi-stage
 

cascaded
 

attention
 

detection
 

structure
 

is
 

employed
 

to
 

aggregate
 

the
 

target
 

features
 

of
 

multiple
 

detection
 

stages,
 

balance
 

the
 

number
 

of
 

positive
 

and
 

negative
 

samples,
 

and
 

gradually
 

improve
 

the
 

region
 

proposals
 

output
 

by
 

the
 

Region
 

Proposal
 

Network.
 

Experiments
 

on
 

the
 

authoritative
 

KITTI
 

autonomous
 

driving
 

dataset
 

demonstrate
 

that
 

MCA-VoxelNet
 

achieves
 

an
 

inference
 

speed
 

of
 

17.54
 

FPS
 

and
 

attains
 

car
 

detection
 

accuracies
 

of
 

94.19%,
 

85.93%,
 

and
 

86.17%
 

on
 

the
 

easy,
 

moderate,
 

and
 

hard
 

difficulty
 

levels,
 

respectively.
 

These
 

results
 

outperform
 

the
 

second-best
 

method
 

by
 

2.64%,
 

1.16%,
 

and
 

1.91%.
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0 引  言

  三维目标检测在自动驾驶中具有重要意义[1-2]。激光

雷达(light
 

detection
 

and
 

ranging,LiDAR)传感器通过点云

的形式获取场景的深度信息,即使在复杂照明条件下依然

能实现稳定的目标定位[3-5]。近年来,基于LiDAR的三维

检测方法受到广泛关注,早期方法中,Chen等[6]提出将点

云投影为鸟瞰图(bird's
 

eye
 

view,BEV)或深度图,用于目

标检测。随后,基于点的方法逐渐成为主流。SA-SSD[7]通
过一个辅助网络,将骨干网络中的卷积特征还原为点级表

示,利用点云的结构信息提升单阶段探测器的定位精度。

PointPillars[8]采用PointNet[9-10]提取柱状体中点云的特征,
用于后续的目标检测。PointRCNN[11]提出了经典的两阶

段检测框架:第一阶段自下而上生成三维建议,第二阶段在
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规范坐标系中对建议进行精细回归,获得最终检测结果。

3DSSD[12]则通过融合采样策略,进一步降低计算开销并提

升效率。同时,基于体素的稀疏卷积方法也逐渐兴起。

Voxel-R-CNN[13]结合两阶段框架与体素特征,兼顾精度与

效率;SECOND[14]引入稀疏卷积加快推理速度;而 PV-
RCNN[15]综合利用体素卷积和PointNet的灵活感受野来

获得更多的目标判别特征。
尽管基于LiDAR的三维目标检测技术取得了显著进

展[16-18],但对于远距离目标上的检测性能仍存在明显不足,
主要原因在于LiDAR在远距离场景中采样密度较低,导致

点云数据过于稀疏[19-20]。相比之下,彩色图像传感器具备

高分辨率和丰富的语义信息[21],近年来,利用二维图像生

成伪点云以补充稀疏点云成为研究热点,此类方法通过在

原始LiDAR点周围生成虚拟点,从而增强点云密度和目标

几何信息。例如,MVP[22]提出了一种将RGB图像无缝融

合到基于LiDAR的三维识别流程中的方法,利用2D图像

生成密集的三维虚拟点,以增强原始稀疏点云的表达能力;

SFD[23]基于深度补全网络构建虚拟点,有效重建远处物体

的几何结构,显著提升了三维检测性能。
然而,由图像生成的虚拟点云在提升点云密度的同时,

也引入了过度稠密的问题。例如,在 KITTI[24]数据集中,
一张分辨率为1

 

242×375的图像可生成约40万~50万个

虚拟点,造成了巨大的计算开销,影响模型的训练与推理效

率。为此,部分工作尝试使用下采样策略进行密度控制,如
RandLA-Net[25]采用高效的随机抽样方法显著减少点云数

量,但由于LiDAR在近距离能够获取较为完整的物体形

状,而远距离点云则更为稀疏,盲目地对虚拟点进行下采样

可能会舍弃关键的远距离几何信息,进而影响检测精度。
因此,如何在提升点云密度的同时兼顾信息保留与计算效

率,仍是一个亟待解决的问题。
针对上述问题,本文提出了一种基于伪点云融合的多

模态三维目标检测框架(multi-stage
 

cascaded
 

attention-
VoxelNet,MCA-VoxelNet)。该框架利用深度补全生成的

伪点云,有效缓解点云稀疏问题。同时,设计距离感知采样

模块,用于剔除近距离的冗余体素,从而提升计算效率。同

时,设计多阶段级联注意力检测结构,用于融合不同检测阶

段的特征表示,逐步完善区域候选,并缓解正负样本不均衡

问题。工作的主要贡献如下:

1)基于深度补全网络构建伪点云,并与原始点云融合

生成多模态点云;

2)设计了一种距离感知采样模块,用于调控点云密度。
在激光雷达扫描中,近距离物体的几何形状通常较为完整,
近距离生成的大量虚拟点对性能提升有限,却显著增加计

算开销。为此,该模块优先采样关键的远距离虚拟点,舍弃

大量近距离点云,从而显著提高网络计算效率;

3)为解决远近距离正负样本不均衡问题,设计多阶段

级联注意力检测网络,在检测过程中增强远距离目标的响

应,缓解正负样本分布不均,确保后续阶段能够获得充足特

征,有效恢复被忽略的远处目标。

1 算法框架

  基于Voxel-RCNN网络框架,在数据输入层,首先通

过深度补全网络处理RGB图像,利用图像语义信息生成的

虚拟点云数据;然后将虚拟点云与激光雷达采集的原始点

云进行空间对齐,构建多模态点云数据。预处理阶段,数据

经过距离感知采样策略进行降采样,并通过体素特征编码

层将不规则点云转化为规则化的体素表示。特征提取阶

段,采用3D稀疏卷积主干网络对点云进行三维特征提取,
网络最后一层在BEV视角下沿高度维度将三维特征压缩

为二维特征图。二维特征提取网络对特征图进行不同尺度

的下采样后送入区域建议网络(region
 

proposal
 

network,

RPN),该网络通过预设的3D锚框生成初步的三维目标预

测框和类别概率分布。最后,输入多阶段级联注意力检测

结构对建议框进行多阶段级联细化,输出最终的物体类别

信息、三维尺寸和检测置信度。图1展示了该方法的总体

框架。

2 基于伪点云融合的多模态三维目标检测

2.1 伪点云生成

  深度补全网络旨在在彩色图像的辅助下,从稀疏的深

度图中预测出稠密的深度图。该任务主要服务于下游应

用,如语义分割、目标检测和三维重建等。然而,目前在三

维目标检测领域中,深度补全方法的应用仍较为有限。最

近,在基于图像的三维物体检测中,有一些工作[26-27]使用深

度补全网络来生成伪点云。图2展示了深度补全网络结构

图,首先基于图像的深度估计开始,将一对水平偏移的摄像

机拍摄的左右图像Il 和Ir 作为输入,假设该算法将左图像

Il 视为参考,并输出记录每个像素 (u,v)的水平视差到右

图 像 Ir 的 视 差 图 D,理 想 情 况 下,Il u,v  和

Ir u,v+D u,v    将描绘相同的3D位置。因此,可以

通过下式导出深度图Z:

Z(u,v)=
fU×b
D u,v  

(1)

式中:Z u,v  是深度图中像素 (u,v)的深度值,fU 是左

相机 的 水 平 焦 距,b 是 左 右 相 机 之 间 的 基 线 距 离,

D u,v  是视差图中像素 (u,v)的视差值。
将所得到的深度图Z 反投影到3D点云中,通过下式

将像素 (u,v)变换为3D中的 (x,y,z):

z=Z(u,v) (2)

x =
(u-cu)×z

fU
(3)

y =
(u-cu)×z

fV
(4)

式中:(cu,cv)是相机中心的像素位置,fV 是垂直焦距。
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图1 总体框架图

Fig.1 Overall
 

framework
 

diagram

图2 深度补全网络结构图

Fig.2 Depth
 

completion
 

network
 

structure
 

diagram

  通过将所有像素反向投影到3D坐标中,得到3D点云

{x(n),y(n),z(n),r}Nn=1,其中 N 是像素数,r 为反射强度。
这样的点云可以被变换到给定参考视点和观察方向的任

何坐标系中,将得到的点云称为伪点云。由于原始点云和
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伪点云可能来自不同的坐标系,需要用以下变换将它们对

齐到同一个坐标系中:

P'v(x',y',z',r')=R·Pv(x,y,z,r)+t (5)
式中:Pv 是虚拟点云中的点,P'v 是对齐后的点,R 为旋转

矩阵,t为平移向量。
将原始点云Po 和伪点云Pv 合并为融合点云Pfus:

Pfus = (Po,ro),(P'v,rv)  (6)
图3展示了融合点云的可视化效果,其中黑色点云代

表原始点云,红色点云则是由RGB图像生成的虚拟点云。
可以观察到,在近距离范围内,原始点云和虚拟点云较为

密集,冗余信息可能干扰物体特征的提取;而在远距离区

域,虚拟点云有效弥补了原始点云的稀疏性,使远处目标

(如车辆)的几何特征更加完整,从而有助于提升目标检测

的精度。

图3 融合点云

Fig.3 Fused
 

point
 

cloud

2.2 距离感知采样模块

  为缓解虚拟点带来的计算负担并提升检测的鲁棒性,
引入了一种距离感知采样模块,它通过在训练和推理过程

中丢弃输入的虚拟点来加快网络的速度。现在有两种常

见的采样方法可以减少点云数据的输入量:随机采样和最

远点采样。但是随机采样是在整体体素数据上随机抽取

一定量的数据来减少数据的输入进而降低计算成本,它并

不关注数据的重要程度。基于对点云数据的观察,激光雷

达扫描的物体往往在近距离的特征表现的比较完整,而在

远处物体特征会变的稀疏,因此随机采样会使不同距离的

特征保持不平衡,会不可避免地牺牲一些有用的形状线

索。最远点采样的核心思路是致力于让各个采样点之间

的距离达到尽可能远的程度,从本质上来说,也就是促使

数据能够尽可能地实现离散且均匀分布,具体实施办法

是:假设输入点云集合为P,其中包含n 个点,首先从中随

机选取一个初始点P0,构成采样点集合S = P0  。 然

后,计算集合内所有点到采样点的最小欧式距离,选取距

离最远的点作为下一个采样点,加入S。重复此过程,每次

更新每个点到当前采样点集合S 的最小距离,并选取最大

值对应的点加入集合P,直到采样得到一定数量的点为

止。在处理大量点云时,由于频繁计算欧式距离,最远点

采样计算开销较大。
为了解决这个问题,引入了一种距离感知采样模块来

执行高效和平衡的采样,该模块主要包括两个步骤:首先,
根据点云中点到传感器的距离,将输入点云划分为若干个

距离区间(共10个),并设定最大采样距离为60
 

m,以确定

各区间的边界。其中,距离小于30
 

m的区域被定义为近

距离区间。在这些近距离区间内,点云密度较高,为避免

过多冗余信息,采用随机下采样的方式,控制每个体素内

的点数在0~1
 

000,通过设定整体的丢弃率,只需很小的

计算成本就能得出需要丢弃的体素数量。对于距离超过

30
 

m的远距离区间,由于点云数据较为稀疏,保留所有体

素信息,以确保远距离目标的检测精度。

2.3 用于建议优化的级联注意力网络

  级联检测网络在二维图像目标检测任务中取得了显

著的效果。Cai等[28]提出的Cascade-R-CNN采用了一种

多阶段的级联目标检测结构,在检测头部分采用了一系列

经过增加交并比(intersection
 

over
 

union,IoU)阈值训练的

检测器来优化感兴趣区域建议。Cascade
 

R-CNN包含 N
个级联细化模块,第j个细化模块将前一阶段的区域建议

Bj-1 作为输入,并使用特征提取器提取目标特征Fj,目标

特征Fj 再通过一个置信度预测分支和一个边界框回归分

支分别输出一个新的目标Cj 和边界框Bj,这个迭代细化

过程可以简化为:

Fj =φj(Bj-1) (7)

Cj =Sj(Fj) (8)

Bj =Rj(Fj) (9)
式中:j=1,2,…,N。

然而,普通的级联结构没法在3D目标检测器上取得性

能优化,原因为:忽略了远处的物体特征,在多阶段方法中,
由于缺乏负训练样本,在后期训练阶段会存在训练过度拟

合的情况,在二维目标检测方法中,通过级联结构来建立逐

步提高IoU阈值的检测头,用上一个阶段训练好的结果作

为输入输送到下一个检测阶段来重新采样平衡训练样本。
然而,在3D点云数据中,由于点云通常是非均匀分布的,近
距离和远距离物体之间样本数量不平衡,在近距离处具有

密集点的物体可以产生高质量的区域建议,被选为正样本,
而远处的物体由于更加稀疏往往被判定为负样本。

在这种不平衡的训练下,多阶段的训练方法可以准确

预测LiDAR附近的物体,而忽略远处的物体。为了解决

该问题,引入了一种多阶段级联注意力检测头,通过在前

期阶段增加更多目标的出现,确保后续阶段能够获得足够

的物体特征,从而有效恢复被忽略的远处目标。简而言

之,需要在每个检测阶段之间建立有效的连接,引用跨阶

段聚合特征的方式来增加目标的特征,从而能够更加准

确,更容易地检测远处和近处难以识别的物体。
现有级联结构只关注当前阶段的候选特征,忽略了前

序阶段所提供的潜在信息,导致多阶段特征未能充分利
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用,为解决这一问题,需要进一步对各阶段的特征信息进

行融合,一种简单的实现方式是将各阶段输出的特征直接

拼接,但是不同检测阶段输出得到的特征重要性很难学

习,会导致性能提升有限。鉴于近年来注意力机制在特征

选择方面的有效性,本文设计了一种基于多阶段级联注意

力的特征聚合策略,能够自适应地捕捉各阶段特征的重要

性,从而实现更有效的信息整合与目标检测性能的提升。
结构如图4所示。

图4 多阶段级联注意力检测结构

Fig.4 Multi-stage
 

cascaded
 

attention
 

detection
 

structure

  对于每个由RPN网络输出的编码特征Fj,首先通过

卷积核对特征进行处理并映射到高维空间,对于第j个检

测阶段,收集之前所有阶段和当前阶段构成特征Fj =
F0,F1…  ,然后根据式(10)~(13)分别计算查询矩阵向

量Qj,键向量矩阵Kj,值向量矩阵Vj,和注意力权重矩阵

Hj。

Qj =FjWj
q (10)

Kj =FjWj
k (11)

Vj =FjWj
v (12)

Hj =softmax(Q
j(Kj)T

c'
)Vj (13)

式中:C'为多头注意力的特征维度。
通过执行交叉注意力的操作,聚合来自不同阶段的特

征。通过采用这种级联关注设计,模型可以更好地估计建

议在各个阶段的质量,有助于提高建议的细化精度。表1
为多头注意力参数表。

表1 多头注意力参数

Table
 

1 Multi-head
 

attention
 

parameters
参数名 数值

注意力头数 4
特征维度 256

  对于预测边界框的回归,遵循 Voxel-RCNN的方法,
对边界框尺寸、位置以及方向残差进行回归。在训练阶

段,与前文提到的级联检测网络类似,设置三维IoU阈值

以此来定义不同检测阶段中的负样本和正样本。其中,在
第一个阶段,如果一个建议框和地面真值框具有至少0.5
个3D

 

IoU,则该建议框被视为建议框细化分支的正样本,
否则将被视为负样本,随后每个阶段的IoU阈值增加0.1。
在测试阶段,对所有检测阶段的边界框和分数取平均值,

从而生成最终的检测结果。

2.4 特征提取主干网络

  最近的许多网络使用三维稀疏卷积作为主干网络,以
提高准确性和效率,MCA-VoxelNet也采用这种设置。三

维稀疏卷积主干提取特征的步骤如下:首先将原始点分割

成小体素,对于每个体素,使用所有内部点的原始特征的

平均值来计算原始特征,采用多个三维稀疏卷积块将三维

点云编码特征向量,卷积块由一系列3×3×3三维稀疏卷

积核组成,这些卷积核将空间特征下采样到1×、2×、4×,
最终下采样到8×的张量。最后一层的三维特征沿着Z 轴

维度被压缩为BEV特征,用于感兴趣区域目标建议生成。

2.5 区域建议网络RPN
  区域建议网络RPN通过在2D

 

骨干网络输出的二维

图像的卷积特征图上应用一系列卷积窗口来生成物体的

候选区域。具体过程是:首先通过3个卷积层提取图像的

高层次特征图,然后在该特征图上使用一个小的卷积核滑

动,针对每个位置生成多个锚点,每个锚点会被分类为前

景或背景,并通过回归预测调整该锚点的位置、大小和方

向,以尽量接近真实物体的边界框,RPN通过基于IoU的

匹配将真实边界框分配给锚点,对于第i个锚点,分别用
 

αi、α'i、δi、δ'i来表示预测的得分、目标实际得分、预测的残差

和目标实际残差。区域建议网络RPN的损失定义为:

LRPN =∑iLscore(αi,α'i)+I(IoUi>u)∑Lreg(δi,δ'i)

(14)

Lscore=

1
2x

2,
 

|x|<1

|x|-
1
2
,

 

其他

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁 (15)

式中:I(IoUi>u)表示只有当检测物体的目标建议IoUi>
u才会产生回归损失,x =αi-α'i。

在KITTI数据集中,IoU阈值u设置为0.5和0.7两
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个档位。Lscore和Lreg 分别表示平滑L1损失和边界框回归

二元交叉熵损失。

3 损失函数

  网络的总体损失由区域建议网络RPN的损失LRPN 和

多阶段级联注意力检测头的损失LMCA组成,总体损失函数

可以表示为:

LTotal=LRPN+LMCA (16)

RPN的损失LRPN 如上节所述,多阶段级联注意力检

测头的损失LMCA 是多个阶段中的多个细化损失的总和,
在每一个建议细化阶段,LMCA 采用边界框回归损失Lreg 和

加权得分损失Lscore,对于第j个细化阶段的第i个区域建

议,多阶段级联注意力检测头的损失LMCA 可以表示为:

LMCA =∑i∑j
[LMCA(αi,α'i)+I(IoUj

i>uj'
i)Lreg(δi,δ'i)]

(17)
式中:αi,α'i,δi,δ'i分别表示预测分数、目标实际分数、预测

残差和目标实际残差。

4 实验及分析

4.1 数据集及评估指标

  为实现与其他方法进行公平对比,选用在自动驾驶领

域被公认为极具权威性的数据集———KITTI
 

数据集来开

展相应实验。KITTI数据集是自动驾驶三维目标检测最

流行的数据集之一,包含了道路场景的激光雷达点云和配

套的图片数据,其中有7
 

481个训练样本和7
 

518个测试样

本,并细分为简单、中等和困难3个层级。这3个等级的依

据图片中二维包围框的像素高度、遮挡程度和截断比例

3个指标进行划分,表2展示了3个难度层级的划分依据。
本文主要使用KITTI的两个指标进行检测结果的评估:三
维目标检测性能(3D

 

mean
 

average
 

precision,3D
 

mAP,

3DIoU=0.7)和 鸟 瞰 图 检 测 性 能(BEV
 

mean
 

average
 

precision,BEV
 

mAP,2DIoU=0.7)。

表2 KITTI数据集中难度层级的划分依据

Table
 

2 Basis
 

for
 

difficulty
 

levels
 

in
 

KITTI
 

dataset
指标 困难 中等 简单

样本数量 28
 

742 18
 

971 12
 

611
像素高度 >25 >25 >40
遮挡程度 难以察觉 部分可见 全部可见

最大截断 <50% <30% <15%

  由于汽车类目标在自动驾驶场景中种类最多、数量最

多,且检测结果较为稳定,因此其检测性能能够较好地反

映网络的整体表现。基于此,主要以汽车作为实验评估的

目标。按照KITTI数据集的官方要求,主要使用40个召

回位置的平均精度对检测结果进行评估,该指标的IoU阈

值分别为汽车、行人和骑自行车者的0.7、0.5和0.5。平

均精准度为对Precision-Recall曲线上的Precision值求均

值,定义如下:

APR =
1
R∑r∈RPinterp(r) (18)

Pinterp(r)=max
r~>r

p(r) (19)

式中:AP 为平均精度,R = 0,140
,2
40
,…,1  ,表示40点

插值,Pinterp(r)为插值函数,r为设定召回值,r
~
为实际召

回值。

4.2 参数设置

  区域建议网络RPN采用锚框机制,表3为三类检测

类别的锚框尺寸。

表3 锚框尺寸

Table
 

3 Anchor
 

frame
 

size

类别
锚框尺寸

长 宽 高

汽车 3.92 1.62 1.58
行人 0.81 0.59 1.75

骑行者 1.78 0.62 1.71

  所有的传感器都使用相同的标准检测范围,KITTI数

据集坐标系方向为传感器朝向为x 轴正方向,x 轴向左为

y轴正方向,向上为z轴正方向,x 轴上的范围为[0,70.4]m;

y 轴上的范围为[-40,40]m;z 轴上的范围为[-3,1]m,
体素分辨率为[0.05,0.05,0.05]m。还使用了常规的数据

增强方法如地面真值采样,局部旋转平移,全局旋转尺度

变换增强,随机旋转角度和尺度缩放比例,均服从正态分

布,角度分布区间为[-0.78°,0.78°],尺度缩放比例区间

为[0.9,1.1]。
在训练过程中,使用自适应矩估计(adaptive

 

moment
 

estimation
 

,
 

Adam)优化器和余弦退火策略调整学习率;

Batchsize为4;初始学习率为0.00125;训练周期为60;学
习率 衰 减 系 数 为 0.01。实 验 设 备 使 用 一 台 配 备

RTX4090GPU和Intel
 

14900KF
 

CPU的计算机。

4.3 定量结果与分析

  为确保与其他方法进行公平对比,首先在相同的实验

环境中复现了几种最先进的三维目标检测方法,其中单模

态方法有:PV-RCNN、Voxel-RCNN和SE-SSD;激光点云

和图像融合的多模态方法有:SFD、VPFNet和 TED-M。
所有比较方法的源代码都是公开的,所有参数都按照原文

建议配置,且都是基于OpenPCDet工具箱实现。
表4展示了本方法与其他先进方法在KITTI测试集上

的对 比 实 验 结 果,最 优 结 果 用 加 粗 字 体 表 示。其 中,
“LiDAR”代表纯点云三维目标检测方法,而“LiDAR+RGB”
代表融合点云和图像的多模态三维目标检测方法。如表4
所示,引入额外的图像数据使得多模态三维目标检测方法
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在整体精度上优于纯激光雷达点云三维目标检测方法。本

文方法在纯点云和多模态三维目标检测方法中均实现了最

高的三维检测精度,以Car
 

3D
 

AP(R40)指标为例,在KITTI
测试集的简单、中等和困难难度下,本方法分别比次优的方

法高出2.64%、1.16%和1.91%,展示了其在汽车三维目标

检测中的卓越表现。特别需要关注的是,最近提出的SFD

方法,也是采用在稀疏的点云上生成额外的RGB虚拟点以

补充物体特征来提升3D目标检测精度,本方法对比其的

Car
 

3D
 

AP
 

(R40)在简单、中等和困难难度上分别高出

2.46%、1.16%和8.25%,正是距离感知体素丢弃模块在训

练期间丢弃近距离冗余的体素不仅加快了网络的速度,同
时通过模拟更稀疏的训练样本,提高了检测的鲁棒性。

表4 KITTI测试集上的对比实验结果

Table
 

4 The
 

results
 

of
 

comparative
 

experiments
 

on
 

the
 

KITTI
 

test
 

set %

算法 模态
Car

 

3D
 

AP(R40) Car
 

BEV
 

AP
 

(R40)
简单 中等 困难 简单 中等 困难

PV-RCNN LiDAR 90.25 81.43 76.82 94.98 86.14 90.65
Voxel-RCNN LiDAR 90.90 81.62 77.06 94.85 88.83 86.13
SE-SSD LiDAR 91.49 82.54 77.15 95.68 91.84 86.72
SFD LiDAR+RGB 91.73 84.76 77.92 95.64 91.85 86.83

VPFNet[29] LiDAR+RGB 91.02 83.21 78.20 93.94 90.52 86.25
TED-M[30] LiDAR+RGB 91.55 84.48 84.26 95.42

 

91.93 88.11
Ours LiDAR+RGB 94.19 85.92 86.17 95.41 91.72 91.92

  图 5 展 示 了 MCA-VoxelNet与 基 线 模 型 Voxel-
RCNN在车辆类别上的3D目标检测可视化对比结果,第
1列为RGB图像,第2与第3列为本文模型与基线模型

的点云检测可视化对比图。从图中可以看出,本文模型

在不同距离范围内均展现出出色的检测能力,尤其在远

距离场景下,能够成功识别出更多低密度点云区域中的

车辆目标(红圈中为基线模型漏检的车辆)。相比之下,
基线模型在同一场景下未能检测到部分远距离车辆,说
明所采用的点云融合策略有效缓解了原始点云在远距离

下稀疏带来的信息缺失问题。整体来看,所提方法在保

证检测精度的同时,进一步增强了对复杂交通场景中目

标的感知能力。

图5 可视化结果对比

Fig.5 Visualization
 

result
 

comparison

4.4 消融实验结果

  在KITTI验证集上的消融实验结果如表5所示,表内

结果为三次重复实验的均值+标准差。首先使用融和虚

拟点云后的数据在Voxel-RCNN的框架上经过60轮训练

后在验证集上进行推理,三个难度类别的精度分别提高了

2.38%、3.69%、5.54%;随后添加了距离感知采样方法,
每秒帧数(frames

 

per
 

second,FPS)的提升对比未使用采样

达到3.25;单 独 添 加 了 MCA 方 法 的 模 型 对 比 Voxel-

RCNN三个难度类别分别提升了2.15%、4.67%、4.78%,
性能的提高主要来自多阶段级联注意力检测头的设计,聚
合了来自多个检测阶段的建议特征,从而实现更有效和更

全面的检测物体特征细化;最终,添加了多模态数据、体素

采样方法和 MCA的模型分别在简单、中等和困难难度汽

车类别 上 分 别 比 基 线 模 型 Voxel-RCNN 高 出3.30%,

4.46%和8.92%。
进行一系列消融实验来验证提出的 MCA,首先使用
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  表5 消融实验结果

Table
 

5 Results
 

of
 

ablation
 

experiments

虚拟点 距离感知采样 MCA
Car

 

3D
 

AP(R40)/%
简单 中等 困难

FPS

× × × 90.83±0.14 81.55±0.17 77.13±0.20 25.12±0.11
√ × × 93.21±0.12 85.24±0.13 82.67±0.15 21.87±0.09
√ √ × 93.11±0.11 85.37±0.15 82.65±0.18 24.05±0.13
× × √ 92.98±0.10 86.22±0.14 81.91±0.16 18.70±0.08
√ √ √ 94.13±0.14 86.01±0.09 86.05±0.16 17.42±0.10

Voxel-RCNN作为基线模型,构建了一个基于自注意力的

检测头模型,比较结果如表6所示,可以看到简单的注意

力结构并不能带来性能提升,随后,通过加入的多阶段级

联注意力检测头,检测性能在简单、中等和困难难度上分

别提升到了93.85%、86.83%和86.13%,这是因为 MCA
融合了来自不同检测阶段的目标特征,从而在点云稀疏的

场景中实现了更具鲁棒性的检测效果。

表6 不同注意力方法对比结果

Table
 

6 Comparison
 

results
 

of
 

different
 

attention
 

methods
%

方法
Car

 

3D
 

AP(R40)
简单 中等 困难 平均

自注意力机制 93.03 86.31 81.85 87.06
多阶段级联注意力 93.85 86.83 86.13 89.94

  为了研究多阶段级联注意力检测结构中的级联阶段

数量对本文所提检测方法性能的影响,在KITTI验证集进

行了相关实验,结果如表7所示,MCA-VoxelNet使用3个

级联阶段在中等和困难的Car
 

3D
 

AP中达到最佳结果,使
用5个级联阶段在简单难度中达到最佳结果,可以观察到

使用3、4、5三个阶段的检测性能彼此接近,但运行时间却

逐步上升,因此采用3个级联阶段可以达到最佳的精度效

率权衡。

表7 级联细化阶段数量的消融实验结果

Table
 

7 Ablation
 

experiment
 

results
 

using
 

different
 

numbers
 

of
 

cascade
 

refinement
 

stages

级联阶

段数

Car
 

3D
 

AP(R40)/%
简单 中等 困难

运行时间/

ms
1 93.28 85.14 84.97 60.45
2 93.79 85.60 85.52 68.92
3 94.10 85.93 86.06 72.89
4 93.94 85.74 85.89 88.61
5 94.19 85.88 85.06 113.27

  随后进行实验证明距离感知采样模块的先进性,使用

Voxel-RCNN作为基线模型,在添加了融和数据后,在输

入数据时分别采用随机均匀降采样和距离感知采样模块,
下采样率都设置为80%,比较结果如表8所示,在困难难

度中,随机均匀降采样因为在采样过程中丢失了大量目标

特征而检测精度下滑了高达25.65%,主要是因为没有关

注远处体素和近距离体素的重要程度而丢失了更多有用

特征但保留更多无用特征而带来精度的下降,而距离感知

体素丢弃模块在训练期间丢弃近距离冗余的体素不仅加

快了网络的速度,还有效降低了融和点云的冗余问题带来

的精度下降。

表8 不同采样方法对检测性能的影响

Table
 

8 Influence
 

of
 

different
 

sampling
 

methods
 

on
 

detection
 

performance %

方法
Car

 

3D
 

AP(R40)
简单 中等 困难 平均

随机均匀采样 80.95 62.47 57.87 67.10
距离感知采样 92.99 85.87 83.52 87.46

  图6为输入体素采样率梯度对检测精度和FPS的影

响曲线,采样率梯度差为2%,观察图6可以得出,随着采

样率逐渐上升,检测精度变化较为平缓,保持稳定状态,但
当采样率超过80%后,精度会突然下降,表现出明显的性

能退化。与此同时,FPS随着采样率的提高而逐步增加。
将输入体素的采样率设置为80%,可以在精度与效率之间

取得最佳平衡。

图6 输入体素采样率梯度对检测精度和FPS的

影响曲线图

Fig.6 Input
 

voxel
 

sampling
 

rate
 

gradient
 

effect
 

curve
 

on
 

detection
 

accuracy
 

and
 

FPS
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图7展示了 MCA-VoxelNet与基线模型在车辆、行人

和骑行者三类目标上的3D检测任务中对应的Precision-
Recall曲线对比结果。可观察到,所提模型在3个类别上

均呈现出更为优越的曲线走势,整体更接近右上角,显示

出在召回率提升 的 同 时 能 够 保 持 较 高 的 精 度。此 外,

MCA-VoxelNet在各类别曲线下的面积显著大于基线模

型,表明其在不同检测置信度阈值下均具有更稳定和准确

的检测性能。该结果验证了模型在多类3D目标检测任务

中的有效性和泛化能力。

注:虚线为本文方法,实线为基线方法

图7 KITTI验证集上的召回-精度曲线,

MCA-VoxelNet与Voxel-RCNN的比较

Fig.7 Recall-precision
 

curves
 

of
 

MCA-VoxelNet
 

and
 

Voxel-RCNN
 

on
 

the
 

KITTI
 

validation
 

set

为了研究模型在哪些地方对基线模型的改善最大,基
于不同的距离在KITTI验证集上评估了检测性能结果,检
测指标为Car

 

3D
 

AP(R40)和Car
 

BEV
 

AP(R40),结果如

图8、9所示,折线图为模型性能对比,柱状图为检测精度

提升。MCA-VoxelNet对于范围在20~40m远距离物体

有显著的改进,改进主要来源于模型利用虚拟点融合的策

略改进了原始点云在远距离物体的几何特征稀疏的缺点,
更好地补充了远距离稀疏物体的几何特征,其次,引入多

阶段级联注意力的检测头,在每个检测阶段之间建立有效

  

的连接,通过级联注意力进行特征聚合,引用跨阶段聚合

特征的方式可以增加目标的特征。

图8 Car
 

BEV
 

AP(R40)在不同距离上的检测性能对比

Fig.8 Comparison
 

of
 

detection
 

performance
 

of
 

Car
 

BEV
 

AP
 

(R40)
 

at
 

different
 

distances

图9 Car
 

3D
 

AP(R40)在不同距离上的检测性能对比

Fig.9 Comparison
 

of
 

detection
 

performance
 

of
 

Car
 

3D
 

AP
 

(R40)
 

at
 

different
 

distance

为评估模型在驾驶环境中对其他物体检测性能的提升,
本文基于3D

 

AP(40)指标,对场景中的行人和骑行者检测结

果进行了对比实验,结果如表9所示。与基线模型相比,

MCA-VoxelNet
 

在所有检测类别上均表现出显著的性能提升。
实验结果表明,该方法具有良好的通用性,能够有效推广至多

类目标检测任务,从而进一步提升整体检测性能。

表9 行人和骑行者检测精度对比结果

Table
 

9 Comparison
 

of
 

detection
 

accuracy
 

for
 

pedestrians
 

and
 

cyclists %

方法
Pedestrian

 

3D
 

AP(R40) Cyclist
 

3D
 

AP(R40)
简单 中等 困难 平均 简单 中等 困难 平均

Voxel-RCNN 69.23 64.51 55.78 63.17 88.42 72.77 65.29 75.49
MCA-VoxelNet 73.88 66.57 59.92 66.79 92.25 72.70 68.13 77.69

  为了突出 MCA-VoxelNet在计算效率方面的优势,与
现有方法的运行时间进行了详细分析,结果如表10所示。
单模态(LiDAR)方法的平均运行时间为66.06ms,显著低

于多模态(LiDAR+RGB)方法的95.10ms,这主要由于多

模态 方 法 需 要 处 理 更 复 杂 的 数 据 融 合 任 务。MCA-

VoxelNet在多模态方法中以79.34ms的运行时间表现出

显著优势,不仅远低于多模态方法的平均值,还接近部分

单模态方法的性能(PV-RCNN的72.89ms)。通过高效的

模态融合和计算优化,MCA-VoxelNet在保证多模态方法

高精度的同时,显著降低了计算负担,验证了其在计算效

·921·
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  表10 不同方法运行时间对比结果

Table
 

10 Comparison
 

of
 

running
 

time
 

results
 

for
 

different
 

methods
方法 模态 运行时间/ms

PV-RCNN LiDAR 72.89
Voxel-RCNN LiDAR 39.67
SE-SSD LiDAR 29.91
SFD LiDAR+RGB 121.74
TED-M LiDAR+RGB 90.12
VPFNet LiDAR+RGB 81.83
Ours LiDAR+RGB 79.34

率上的优越性。
为验证模型在不同天气条件下的鲁棒性,在加拿大恶

劣驾驶条件数据集(Canadian
 

adverse
 

driving
 

conditions,

CADC)[31]上进行了测试。该数据集包含雪天、低光照等

复杂驾驶场景的激光雷达点云与图像数据。实验结果表

明,模型在雪天环境下仍能保持稳定的检测性能,mAP达

到65.06%,性能下降主要源于远距离目标被雪雨遮挡。
尽管极端天气条件(如降雪、低能见度)对检测任务带来一

定挑战,但模型整体表现可靠,验证了其在复杂场景下的

鲁棒性。图10为 在 CADC 数 据 集 上 的 检 测 结 果 可 视

化图。

图10 CADC数据集检测结果可视化

Fig.10 Visualization
 

of
 

CADC
 

dataset
 

inspection
 

results

5 结  论

  文章提出了一种新的基于虚拟点的多模态三维目标

检测框架,通过在原始点云中增加图像生成的虚拟点云以

实现更准确的定位和回归,同时通过新设计的距离感知体

素丢弃来解决虚拟点的密度问题,最后通过引入多阶段级

联注意力检测结构来聚合多阶段的目标特征,解决了在多

阶段三维目标检测中忽略远距离目标和误差传播的问题。
在权威的KITTI自动驾驶数据集上,MCA-VoxelNet

以17.54的FPS在难度分数阈值为0.7、0.7、0.7的简单、
中等和困难难度的汽车检测上达到94.19%、85.92%和

86.17%,对比基线模型Voxel-RCNN分别提高了2.23%、

3.57%和5.68%,同时兼顾了检测精度和运行速度。此

外,进行了一系列消融实验验证了 MCA的有效性,对比自

注意力机制分别提高了0.82%、0.52%和4.46%并最终确

定3个检测阶段的最佳精度效率权衡;进行的一系列补充

实验验证了距离感知体素丢弃模块参数设置在80%能够

达到最佳的精度效率权衡。
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