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摘 要:随着网络攻击手段的多样化和流量特征的复杂化,网络恶意流量的检测面临着越来越严峻的挑战。传统的

流量检测方法在准确性和可靠性方面逐渐无法满足现代网络环境的需求,尤其是在高维数据和复杂攻击模式的情况

下。为解决上述问题,本文提出了一种基于冠豪猪优化算法、双向长短期记忆网络和Kolmogorov-Arnold网络的网络

恶意流量检测模型。该模型利用双向长短期记忆网络捕捉流量数据的双向时序特征,结合Kolmogorov-Arnold网络

的非线性映射增强特征表达能力,并通过冠豪猪优化算法优化超参数提升模型性能。采用CIC
 

UNSW-NB15增强数

据集进行实验,实验结果表明,模型在二分类和多分类任务中准确率分别达到99.12%和94.15%,显著优于其他模

型。此外,模型在应对类别不均衡时,特别增强了对Backdoor和 Worms等少数类样本的检测能力。
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Abstract:
 

With
 

the
 

diversification
 

of
 

network
 

attack
 

means
 

and
 

the
 

complication
 

of
 

traffic
 

characteristics,
 

the
 

detection
 

of
 

network
 

malicious
 

traffic
 

is
 

facing
 

increasingly
 

severe
 

challenges.
 

Traditional
 

traffic
 

detection
 

methods
 

gradually
 

fail
 

to
 

meet
 

the
 

needs
 

of
 

modern
 

network
 

environments
 

in
 

terms
 

of
 

accuracy
 

and
 

reliability,
 

especially
 

in
 

the
 

case
 

of
 

high-
dimensional

 

data
 

and
 

complex
 

attack
 

patterns.
 

To
 

address
 

the
 

above
 

issues,
 

this
 

paper
 

proposes
 

a
 

network
 

malicious
 

traffic
 

detection
 

model
 

based
 

on
 

the
 

Crested
 

Porcupine
 

Optimization
 

Algorithm,
 

Bidirectional
 

Long
 

Short-Term
 

Memory
 

Network,
 

and
 

Kolmogorov-Arnold
 

Network.
 

The
 

model
 

uses
 

the
 

Bidirectional
 

Long
 

Short-Term
 

Memory
 

Network
 

to
 

capture
 

the
 

bidirectional
 

temporal
 

features
 

of
 

traffic
 

data,
 

combines
 

the
 

nonlinear
 

mapping
 

of
 

the
 

Kolmogorov-Arnold
 

Network
 

to
 

enhance
 

feature
 

expression
 

capabilities,
 

and
 

optimizes
 

hyperparameters
 

through
 

the
 

Crested
 

Porcupine
 

Optimization
 

Algorithm
 

to
 

improve
 

model
 

performance.
 

Experiments
 

are
 

conducted
 

using
 

the
 

CIC
 

UNSW-NB15
 

enhanced
 

dataset.
 

The
 

experimental
 

results
 

show
 

that
 

the
 

model
 

achieves
 

accuracies
 

of
 

99.12%
 

and
 

94.15%
 

in
 

binary
 

classification
 

and
 

multi-classification
 

tasks,
 

respectively,
 

significantly
 

outperforming
 

other
 

models.
 

In
 

addition,
 

when
 

dealing
 

with
 

class
 

imbalance,
 

the
 

model
 

particularly
 

enhances
 

the
 

detection
 

capability
 

for
 

minority
 

class
 

samples
 

such
 

as
 

Backdoor
 

and
 

Worms.
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0 引  言

  随着网络攻击手段的不断演进,传统的网络流量检测

方法面临着前所未有的挑战。网络攻击类型的多样化和恶

意活动手段的复杂化,导致传统检测模型在准确性和可靠

性方面难以满足现代网络环境的需求[1]。在2024年《网络
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空间安全科技热点回眸》报告中指出,全球网络空间安全形

势依然严峻,各种新兴威胁和技术挑战层出不穷,尤其是高

级持续性威胁攻击和勒索攻击的频发,严重威胁着全球网

络空间安全[2]。与此同时,网络流量模式的复杂性以及大

规模数据的急剧增长,使得流量检测系统的工作变得愈加

困难。因此,开发一种既能保持高效性,又能准确识别恶意

流量的先进检测模型,显得尤为重要[3]。
近年来,深度学习技术在恶意流量检测中展现了巨大

的潜 力,卷 积 神 经 网 络 (convolutional
 

neural
 

network,

CNN)发挥着重要作用。特别是循环神经网络(recurrent
 

neural
 

network,RNN)及其变种———长短期记忆网络(long
 

short-term
 

memory,LSTM)[4],这些模型因能够捕捉时间

序列数据中的时序依赖关系而备受关注。研究人员广泛探

索将深度学习、特征融合与群智能优化算法引入恶意流量

检测技术中,以提升模型的表达能力与泛化性能,并取得了

一定成果。
在基于深度学习检测方面,深度学习模型在恶意流量

检测中展现出强大的时序建模与特征学习能力。LSTM及

其变体双向长短期记忆网络(bidirectional
 

long
 

short-term
 

memory,BiLSTM)因擅长捕捉流量数据的时序依赖关系

被广泛应用。Jiang等[5]提出并行CNN-LSTM 结构,同时

提取空间与时间特征,有效提升了检测精度。Bamber等[6]

结合递归特征消除与CNN-LSTM 模型,在 NSL-KDD数

据集上实现95%的准确率和94%的F1分数。倪志伟等[7]

提出基于改进生成对抗网络和混合时空神经网络的入侵检

测模型,提高了检测准确率。此外,Volpe等[8]结合LSTM
与佩特里网实现实时攻击检测,Yang等[9]使用BiLSTM与

注意力机制提升了关键特征关注能力。
特征融合与非线性映射技术也得到了深入研究。戚子

健等[10]构建双向门控循环单元与CNN并行结构,并结合

注意力机制在多分类任务中获得99.77%的准确率。Shi
等[11]提出融合双向编码器表示转换与LSTM的模型,捕捉

全局上下文与时序关系。刘拥民等[12]设计堆叠自编码器

与 Wasserstein生成对抗网络结构,以堆叠自编码器进行特

征压缩、Wasserstein生成对抗网络实现少数类扩展,显著

提升模型的特征判别能力。Liu等[13]提出的 KAN 网络

(Kolmogorov-Arnold
 

networks,KAN)在特征增强方面具

有提高。陈万志等[14]提出基于特征耦合泛化的异常检测

方法,通过基于密度的噪声应用空间聚类去噪、最小冗余最

大相关特征排序及贝叶斯优化随机森林,在 NSL-KDD数

据集上实现91.79%的准确率。
在超参数优化与动态调整策略上,研究人员也进行了

诸多尝试。在复杂网络结构下,超参数配置对模型性能具

有决 定 性 影 响[15]。粒 子 群 优 化 算 法 (particle
 

swarm
 

optimization,PSO)、遗 传 优 化 算 法 (genetic
 

algorithm,

GA)、冠豪猪优化算法(crested
 

porcupine
 

optimizer,CPO)
以及鹈鹕优化算法(pelican

 

optimization
 

algorithm,POA)

等被广 泛 应 用。Kishore等[16]使 用 混 沌 粒 子 群 优 化 对

BiLSTM进行调参,在车联网环境中检测率达99.94%。

Barik等[17]提出加权条件逐步对抗网络与PSO融合框架,将
粒子 群 优 化 与 对 抗 训 练 结 合,应 对 对 抗 样 本 风 险。

Kayyidavazhiyil等[18]通过增强遗传算法进行特征选择,提升

多模型检测精度。Papalkar等[19]提出结合乌鸦搜索算法和

灰狼 优 化 算 法 对 CNN 超 参 数 进 行 优 化,在 MNIST 和

CIFAR-10数据集上分别达到了98.9%和91.5%的准确率,
表现优于传统优化方法。彭菲桐等[20]提出基于 GA优化

CNN-LSTM组合网络的轨道电路故障诊断方法,通过GA
搜索最优网络结构与参数,使故障识别率提升至99.28%。

尽管现有网络恶意流量检测研究在结构设计、特征提取

和优化算法应用上成果显著,但仍面临关键挑战。多数深度

学习模型采用单向LSTM或简单时序结构,对攻击流量前

后依赖关系建模不足,识别复杂行为序列效果差;特征融合

方法多为线性或静态权重机制,难以刻画高维流量数据的非

线性关联,适应多样化攻击模式能力弱;部分研究虽引入优

化算法调整模型参数,但这些方法常陷入局部最优、搜索精

度有限、依赖初值,与深度模型融合不深,无法实现结构级调

参。针对以上问题,本文一种基于冠豪猪优化算法、双向长

短期记忆网络和Kolmogorov-Arnold网络的网络恶意流量检

测模型(CPO-BiLSTM-KAN)。具体改进如下:

1)在特征提取阶段,将BiLSTM 引入 KAN网络并进

行结 合,构 建 BiLSTM-KAN 特 征 提 取 模 块。首 先,

BiLSTM 从双向捕捉流量数据的时序特征,然后再进入

KAN网络,KAN网络通过非线性映射对BiLSTM 提取的

特征进行高维变换,增强特征的非线性表达能力,避免复杂

流量特征信息丢失。

2)使用CPO对BiLSTM-KAN模型的超参数进行优

化。CPO模拟冠豪猪防御行为在搜索空间内全局寻优,避
免陷入局部最优,提升模型训练效率和性能。

3)采用多维度评估指标对优化后的BiLSTM-KAN模

型进行性能评估,确保其在实际网络恶意流量检测场景中

的准确性和鲁棒性。

1 基于CPO-BiLSTM-KAN的恶意流量检测模型

1.1 双向长短期记忆网络

  LSTM是RNN的一种变体,用于捕捉时间序列数据

中的长期依赖性。LSTM 通过输入门、遗忘门和输出门3
个门控机制解决了传统RNN中的梯度消失问题。然而,
传统LSTM在需要同时从过去和未来信息中提取特征的

任务中无法充分利用前后文的双向信息。

BiLSTM通过正向和反向两个LSTM 同时处理输入

序列,能够充分捕捉时间序列中的双向上下文信息[21]。其

结构如图1所示。
在本实验中,不同攻击模式在数据序列的不同位置有

不同时间依赖性的表现,BiLSTM 能从正向和反向捕捉不
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图1 BiLSTM结构图

Fig.1 BiLSTM
 

structure
 

diagram

同时间的依赖性,充分利用流量数据的前后时间依赖特征,
捕捉更丰富的时序信息,提供更全面的信息展示。公式

如下:

At =f1(W1xt+W2At-1) (1)

Bt =f2(W3xt+W5Bt+1) (2)

Yt =f3(W4At+W6Bt) (3)
其中,Yt、At、Bt 表示每层的计算结果;Wi 表示每一层

输入的权重;i=1,2,…,t。 输出层Yt 的计算结果由正向

隐藏层、反向隐藏层以及不同权重值通过计算得到。正向

隐藏层与反向隐藏层Bt 两者相互独立,计算结果只与自身

前一层的输出结果相关。

1.2 Kolmogorov-Arnold
 

Networks
  KAN网络是基于Kolmogorov-Arnold展开理论的,其
核心思想是将输入特征通过非线性映射到更高维的空间。
这个映射使得输入的低维特征能够在高维空间中得到更有

效的表达,增强了模型的表达能力。相较于传统神经网络,

KAN通过引入非线性核函数实现高维映射,不仅能突破线

性模型和简单激活函数的局限,还能更精准地刻画输入特

征间复杂的非线性关联,显著提升模型对复杂数据结构的

拟合能力。其结构图如图2所示。

图2 KAN网络结构图

Fig.2 KAN
 

network
 

structure
 

diagram

在KAN网络中,输入特征通过非线性基函数进行变

换,得到高维的特征表示。映射公式如下:

y=∑
m

i=1
αi·φi x  (4)

其中,x 表示BiLSTM网络层提取的特征,αi 表示可

训练的权重,φi x  表示非线性基函数。

1.3 冠豪猪优化算法

  CPO是一种新兴的自然启发式优化算法,灵感来源于

冠豪猪在自然环境中面对捕食者时的防御行为[22]。CPO模

拟冠豪猪的4种主要防御策略:视觉、听觉、气味和物理攻

击,分别对应算法中的探索和开发过程。算法通过模仿这些

防御行为,在搜索空间内进行全局优化,寻找问题的最优解。

1)种群初始化与动态调整

CPO的种群初始化在给定的搜索空间内随机生成个

体的位置。通过该方式,保证了种群的多样性,避免了早期

收敛。初始化公式如式(5)所示。

Xi
0 =LB+rand()·(UB-LB) (5)

其中,LB表示搜索空间上限,UB表示搜索空间下限,

rand()表示生成一个[0,1]之间的随机数。
为了避免种群过早收敛,CPO引入了循环种群减少策

略。该策略通过定期移除并重新加入个体的方法,保持种

群的多样性,帮助算法加速收敛。调整公式如式(6)所示。

Nnew = (Nmax-Nmin)
 

bmod
 

C (6)
其中,Nnew 表示新生成种群的个体数,Nmax和Nmin分

别表示当前种群的最大和最小个体数,C 表示循环次数。

2)防御行为

CPO通过模拟冠豪猪的防御行为,帮助算法在搜索空

间中高效地找到全局最优解。冠豪猪面对捕食者时会采取

以下4种防御策略:
(1)视觉防御阶段

当冠豪猪察觉到捕食者时,它通过抬起并扇动其刺毛,
向捕食者施加威胁。此时,捕食者可能选择远离或继续接

近。CPO通过正态分布生成随机值来决定捕食者的行为,
进而更新个体的位置。其公式为如式(7)所示。

Xt+1
i =Xt

i+α· Xbest-Xt
i  +β·yi (7)

其中,Xt
i 是第i个个体在第t代的当前位置,Xbest 表示

全局最优解,yi表示捕食者的位置,α和β表示调整步长的

系数。
(2)听觉防御阶段

冠豪猪在遭遇捕食者时,会发出威胁性的声音以驱赶

捕食者。CPO模拟这种行为时,通过生成随机噪声来影响

个体的移动。随机噪声的强度决定了捕食者的行为,进而

调整搜索路径。其公式为:

Xt+1
i =Xt

i+γ·(Xr -Xt
i)+δ·U (8)

其中,Xr 表示随机选择的个体位置,γ 和δ 表示控制

步长的参数,U 表示随机噪声,决定捕食者是远离还是靠

近冠豪猪。
(3)气味防御阶段

冠豪猪通过释放恶臭气体来防止捕食者靠近。在
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CPO中,气味防御策略通过模拟气味的扩散过程来调整个

体的搜索路径,增强算法的多样性和随机性。其公式为:

Xt+1
i =Xt

i+λ· Si-Xt
i  (9)

其中,Si 表示气味扩散源,λ 表示控制扩散速率的

参数。
(4)物理攻击防御阶段

当捕食者接近时,冠豪猪会进行物理反击。CPO通过

模拟物理攻击来提高个体的搜索能力,避免陷入局部最优。
此防御策略采用非弹性碰撞模型表示。其公式为:

Xt+1
i =Xt

i-α· Xt
i-Xbest  +Fi (10)

其中,Fi 表示由非弹性碰撞计算得到的力,α 表示收

敛速度因子。

1.4 CPO-BiLSTM-KAN模型

  本文提出的基于CPO-BiLSTM-KAN的网络恶意流

量检测模型结构主要由输入层、双向长短期记忆网络模块、

KAN网络模块、冠豪猪优化算法模块以及流量检测输出层

构成。模型整体结构图和流程图分别如图3和4所示。

图3 CPO-BiLSTM-KAN结构图

Fig.3 Structure
 

diagram
 

of
 

CPO-BiLSTM-KAN

图4 模型整体流程图

Fig.4 Overall
 

flowchart
 

of
 

the
 

model

预处理后的数据通过DataLoader进行批量加载,并依

次送入BiLSTM模型进行处理。BiLSTM通过双向传播机

制在每个时间步上分别获取序列正向和反向的隐藏状态,
并将这两个方向的输出拼接成更丰富的特征向量;然后,经
过BiLSTM拼接的特征向量输入到 KAN层进行进一步

处理。

KAN层利用核映射对特征向量进行非线性变换,从复

杂的特征中提取更深层次的信息;接着进入全连接层对处

理过的特征进行整合,将经过核映射处理的特征映射到类

别空间;最后在进入到输出层得到最后的分类结果。伪代

码如算法1所示。

2 实验结果与分析

  本文在多分类和二分类问题上分别进行实验,以此来

评估模型的性能表现。在训练过程中将本实验的训练批次
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  算法1:
 

CPO-BiLSTM-KAN
1.

 

数据初始化及预处理

2.
 

定义并初始化带KAN层的BiLSTM模型

3.
 

设置CPO优化参数:

  目标函数:obj_function;参数范围:lb,
 

ub,kb;种群数量:num_agent;最大迭代次数:max_iter
4.

 

随机初始化种群位置

5.
 

初始化best_agent=None,best_score=∞
6.

 

CPO优化过程:

  for
 

t
 

=
 

1
 

to
 

max_iter
 

do:

    for
 

i
 

=
 

1
 

to
 

num_agents
 

do:

      计算适应度:fitness[i]
 

=
 

obj_function(positions[i])

      更新最优解:if
 

fitness[i]
 

<
 

best_score
 

then
 

best_score
 

=
 

fitness[i]

    end
 

for
    for

 

i
 

=
 

1
 

to
 

num_agents
 

do:

      生成随机数r1,
 

r2
      更新位置:new_position

 

=
 

positions[i]
 

+
 

alpha
 

*
 

r1+
 

beta
 

*
 

r2
      对新位置应用边界约束:new_position

 

=
 

clip(new_position,
 

lb,
 

ub,kb)

      计算新适应度:new_fitness
 

=
 

obj_function(new_position)

      更新最优解:if
 

new_fitness
 

<
 

best_score
 

then
 

best_score
 

=
 

new_fitness
    end

 

for
  end

 

for
7.

 

使用最优参数训练模型

8.
 

在测试集上评估模型

9.
 

生成分类报告

设置为50次。此外本实验还选取了CNN、RNN、LSTM、

PSO-BiLSTM-KAN、GA-BiLSTM-KAN 和 POA-BiLSTM-
KAN在同 一 数 据 集 进 行 实 验 和 性 能 的 对 比,并 选 取

BiLSTM、LSTM-KAN、BiLSTM-KAN、CPO-BiLSTM 和

CPO-LSTM-KAN进行消融实验。实验结果中用PSO代

表 PSO-BiLSTM-KAN,GA 代 表 GA-BiLSTM-KAN,

POA代表POA
 

BiLSTM-KAN。

2.1 数据集介绍

  本 实 验 应 用 公 开 数 据 集 CIC
 

UNSW-NB15
 

Augmented
 

Dataset对模型进行评估。CIC
 

UNSW-NB15
 

Augmented
 

Dataset数据集是由加拿大网络安全研究所与

新南威尔士大学联合发布。该数据集是对原始 UNSW-
NB15数 据 集 的 增 强 版 本。相 比 于 NSL-KDD、KDD-
Cup99、CIC

 

IDS2017和原始 UNSW-NB15数据集,该数据

包含了更复杂的网络流量模式以及更丰富的特征,可以更

好地模拟现代网络环境中的恶意攻击和正常流量。CIC
 

UNSW-NB15
 

Augmented
 

Dataset数据集由447
 

915条流

量数据组成,每条流量由77种不同特征描述构成。在标

签特征栏中包含9个攻击类别和1个正常类别。流量类型

以及各类别流量数量如表1所示。
由于CIC

 

UNSW-NB15
 

Augmented数据集具有类别

分布不平衡的问题,所以将原始数据集以80%和20%的比

  表1 CIC
 

UNSW-NB15
 

Augmented数据集样本分布

Table
 

1 Sample
 

distribution
 

of
 

the
 

CIC
 

UNSW-NB15
 

Augmented
 

dataset
攻击类型 数量

Generic 4
 

632
Dos 4

 

467
Analysis 385
Backdoor 452
Shellcode 2

 

102
Exploits 30

 

951
Fuzzers 29

 

613
Reconnaissance 16

 

735
Worm 246

总攻击数量 89
 

583
正常流量 358

 

332
总数量 447

 

915

例将其划分为训练和测试数据集,在划分过程中,采用分

层抽样方法来确保每个类别在训练集和测试集中的比例

一致,并使用SMOTE过采样方法将训练集少数类样本进

行数据增强,确保每个类别在训练集中的样本更加平衡,
避免模型在训练过程中偏向于多数类样本提升,提升模型
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对少数类样本的检测能力。

2.2 评价指标

  为全面评估本文模型CPO-BiLSTM-KAN在网络恶意流

量检测任务上的有效性和可行性,本文采用以下评价指标:

1)准确率(Accuracy):准确率表示模型正确分类的样

本占总样本的比例,是最直观的评价指标。计算公式如

式(11)所示。

Accuracy=
TP+TN

TP+TN +FP+FN
(11)

其中,TP(true
 

positive)表示真正例,即模型正确识别

出的恶意流量样本数;TN(true
 

negative)表示真负例,即模

型正确识别出的正常流量样本数;FP(false
 

positive)表示

假正例,即模型将正常流量误判为恶意流量的样本数;FN
(false

 

negative)表示假负例,即模型将恶意流量误判为正

常流量的样本数。

2)精确率(Precision):精确率表示模型预测为恶意的

流量中,实际为恶意的比例,反映了模型预测结果的可靠

性。计算公式如式(12)所示。

Precision=
TP

TP+FP
(12)

3)召回率(Recall):召回率表示实际为恶意的流量中,
被模型正确识别出的比例,反映了模型对恶意流量的识别

能力。计算公式如式(13)所示。

Recall=
TP

TP+FN
(13)

4)F1度量(F1
 

Score):F1度量是精确率和召回率的调和

平均数,能够综合反映模型的性能。计算公式如式(14)所示。

F1=
2×TP

2×TP+FP+FN
(14)

2.3 实验环境

  本实验使用的操作系统为 Ubuntu
 

9.4.0-lubuntul~
20.04.2,GPU为NVIDIA

 

GeForce
 

RTX
 

3090,内存24
 

GB,
使用Python

 

3.8编程,使用Pytorch深度学习框架。

2.4 二分类实验

  在二分类实验中,模型的输入层有77个节点,输出层

有两个输出维度。应用softmax作为激活函数,将正常流

量和恶意流量进行分类。
模型首先使用训练集数据进行训练,训练结束之后使

用测试集数据对该模型进行评估。各模型在二分类的整

体性能对比如表2所示。
从表2中可以看出,本文模型的准确率达到99.12%,

明显高于其他6种模型,这表明本文模型的有效性,在网

络恶意流量检测方面性能更加突出;其次,本文模型在召

回率、准确率和F1度量上均高于其他6种模型。本文模

型的精确率为99.15%,表明该模型在恶意流量检测方面

的误判率更低;本文模型的召回率为99.20%,表明该模型

在捕捉恶意流量方面更强;F1度量是精确率与召回率的综

合体,本文模型的F1度量为99.17%,表明该模型具有更

  表2 各模型在二分类中性能对比

Table
 

2 Performance
 

comparison
 

of
 

each
 

model
 

in
 

binary
 

classification
模型 Precision Recall F1-score Accuracy
CNN 0.956

 

3 0.955
 

8 0.956
 

1 0.955
 

6
RNN 0.957

 

5 0.958
 

2 0.957
 

8 0.957
 

3
LSTM 0.966

 

4 0.967
 

1 0.966
 

7 0.966
 

2
PSO 0.978

 

0 0.978
 

7 0.978
 

3 0.977
 

5
GA 0.976

 

0 0.976
 

7 0.976
 

4 0.976
 

1
POA 0.979

 

5 0.980
 

1 0.979
 

8 0.979
 

3
本文模型 0.991

 

5 0.992
 

0 0.991
 

7 0.991
 

2

轻的预测能力。
综上所述,本文模型在准确率、精确率、召回率和F1

度量上均有较好的性能,这表明本文模型具有较好的泛化

性,适用于网络恶意流量检测方面的工作。

2.5 多分类实验

  在多分类实验中,输入同样为77的特征向量,但与二

分类不同是,输出层有10个输出节点,使用softmax作为

激活函数,检测输入的流量分别属于哪个类别。各模型在

多分类实验中的整体的准确率如表3所示。

表3 各模型在多分类中整体准确率

Table
 

3 Overall
 

accuracy
 

rates
 

of
 

each
 

model
 

in
 

multiple
 

classifications

模型 Accuracy
RNN 0.898

 

8
LSTM 0.900

 

8
CNN 0.888

 

7
PSO 0.926

 

8
GA 0.929

 

7
POA 0.930

 

8
CPO-BiLSTM-KAN 0.941

 

5

  从表3可以看出,与其他模型相比,本文模型在多分类

实验中整体的准确率的测试结果是最优,达到了94.15%,
而且 比 其 他 模 型 分 别 提 高 了4.27%、4.07%、5.28%、

1.47%、1.18%和1.07%,表明本文模型能够更有效地学习

网络流量特征,并且能够提高恶意流量的检测能力。
各个模型在检测网络流量时的精确率如表4所示,各

个模型在检测网络流量时的F1度量如表5所示。
从表4可以看出,本文模型在检测不同流量类型时表

现出较高的精确率,并且优于其他模型。首先,在正常流

量(Benign)类别中,本文模型的精确率达到99.95%,表明

本文模型能准确区分正常流量与其他恶意流量。对于恶

意流量的检测,本文模型在不同恶意流量的精确率与其他

模型相比均有提升,特别是对于少数类样本 Worms和

Backdoor类别准确率分别为52.17%和78.09%,明显高
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  表4 各模型在多分类中的精确率

Table
 

4 Accuracy
 

rates
 

of
 

each
 

model
 

in
 

multiple
 

classifications

类别 RNN LSTM CNN PSO GA PAO 本文模型

Benign 0.999
 

8 0.999
 

8 0.999
 

9 0.989
 

9 0.993
 

6 0.991
 

6 0.992
 

5

Analysis 0.247
 

3 0.274
 

8 0.245
 

5 0.331
 

3 0.194
 

4 0.223
 

7 0.353
 

3

Backdoor 0.237
 

1 0.055
 

3 0.124
 

7 0.502
 

0 0.573
 

8 0.735
 

3 0.780
 

9

DoS 0.293
 

4 0.294
 

0 0.324
 

7 0.453
 

3 0.619
 

0 0.655
 

2 0.656
 

2

Exploits 0.885
 

4 0.877
 

1 0.902
 

2 0.737
 

7 0.732
 

4 0.767
 

4 0.910
 

7

Fuzzers 0.638
 

3 0.633
 

8 0.739
 

8 0.606
 

6 0.602
 

6 0.596
 

8 0.714
 

8

Generic 0.598
 

5 0.640
 

4 0.622
 

4 0.744
 

8 0.730
 

4 0.759
 

9 0.789
 

6

Reconnaissance 0.676
 

6 0.798
 

6 0.818
 

3 0.831
 

3 0.861
 

3 0.819
 

8 0.862
 

3

Shellcode 0.220
 

7 0.183
 

1 0.175
 

3 0.342
 

9 0.376
 

5 0.352
 

0 0.387
 

4

Worms 0.008
 

9 0.015
 

4 0.008
 

3 0.269
 

2 0.083
 

3 0.414
 

6 0.521
 

7

表5 各模型在多分类中的F1度量

Table
 

5 F1
 

metrics
 

of
 

each
 

model
 

in
 

multi-classification

类别 RNN LSTM CNN PSO GA PAO 本文模型

Benign 0.986
 

6 0.986
 

8 0.986
 

6 0.986
 

6 0.988
 

0 0.987
 

3 0.987
 

6

Analysis 0.387
 

6 0.393
 

6 0.384
 

2 0.142
 

9 0.123
 

9 0.065
 

2 0.408
 

5

Backdoor 0.323
 

9 0.101
 

2 0.205
 

1 0.391
 

9 0.453
 

6 0.403
 

2 0.466
 

2

DoS 0.342
 

2 0.351
 

6 0.354
 

5 0.221
 

5 0.233
 

5 0.173
 

5 0.402
 

1

Exploits 0.665
 

5 0.689
 

0 0.639
 

0 0.739
 

1 0.749
 

7 0.750
 

8 0.754
 

8

Fuzzers 0.625
 

6 0.631
 

4 0.622
 

3 0.691
 

1 0.715
 

8 0.712
 

5 0.717
 

6

Generic 0.647
 

2 0.677
 

2 0.657
 

5 0.624
 

9 0.659
 

2 0.658
 

1 0.662
 

5

Reconnaissance 0.701
 

9 0.729
 

1 0.732
 

7 0.729
 

5 0.740
 

3 0.735
 

6 0.749
 

3

Shellcode 0.303
 

9 0.264
 

1 0.263
 

8 0.137
 

1 0.210
 

5 0.210
 

4 0.272
 

2

Worms 0.017
 

5 0.019
 

6 0.016
 

4 0.186
 

7 0.054
 

8 0.327
 

8 0.333
 

3

于其他模型。上述表明,本文模型能够有效减少误报,提
高恶意流量检测的有效性。

从表5可以看出,本文模型在检测多数恶意流量类别

的F1度量显著高于其他模型,尤其在Backdoor、Exploits、

Fuzzers和 Worms 类 别 上 的 提 升 尤 为 明 显,分 别 为

46.62%,75.48%,71.76%和33.33%。对于正常流量F1
度量达到98.76%。上述表明文方法能够更精准地捕捉恶

意流量的特征,减少误分类情况。
综上所述,本文模型在网络恶意流量检测中具有明显

优势,在多类别恶意流量检测的精确率和F1度量均有出

色表现,表明本文模型具有较强的区分能力和鲁棒性,并
且证明本文模型在多样化的恶意流量检测中的适用性和

潜力。

2.6 消融实验

  为了验证各个模块如冠豪猪优化模块、BiLSTM 模块

和KAN网络模块对性能表现的贡献程度设置消融实验,

相关实验结果如表6所示。

表6 消融实验结果

Table
 

6 Ablation
 

experiment
 

results

模型 Precision Recall F1-scoreAccuracy

BiLSTM 0.968
 

5 0.969
 

0 0.968
 

7 0.968
 

2

BiLSTM-KAN 0.976
 

5 0.977
 

1 0.976
 

8 0.976
 

3

LSTM-KAN 0.975
 

4 0.976
 

2 0.975
 

8 0.975
 

3

CPO-BiLSTM 0.970
 

5 0.971
 

1 0.970
 

8 0.970
 

3

CPO-LSTM-KAN 0.977
 

4 0.978
 

1 0.977
 

7 0.977
 

2

本文模型 0.991
 

5 0.992
 

0 0.991
 

7 0.991
 

2

  从表6可以看出,BiLSTM-KAN和LSTM-KAN的精

确率分别为97.65%和97.54%,前者模型优于后者模型,
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表明BiLSTM 在 处 理 时 序 相 关 的 流 量 数 据 时 比 单 向

LSTM具有更强的特征学习能力,能够更好地捕捉恶意流

量的时间依赖性;其次,对比BiLSTM-KAN与BiLSTM的

实验结果,添加KAN网络模块后,模型的精确率和召回率

均有所提升,F1度量提升了0.81%,表明 KAN网络通过

知识注意力机制有效增强了恶意流量的特征提取能力,使
得模型在恶意流量检测任务中能够更准确地区分正常流

量 与 恶 意 流 量。另 一 方 面,CPO-BiLSTM 相 较 于

BiLSTM-KAN,虽然保持了较好的流量检测能力,但由于

缺少KAN网络模块,其精度和召回率较低,表明单一的

CPO无法完全弥补特征选择上的不足。然而,当CPO与

KAN网络结合后,CPO-LSTM-KAN相较于LSTM-KAN
在精确率、准确率、召回率和 F1的值均有所提升,表明

CPO在优化训练策略方面的重要作用,能够增强模型的稳

定性,并进一步提升网络流量的检测能力。
本文模型在实验结果中取得最佳性能,整体的准确率

和F1度量分别达到了99.12%和99.17%,同时精确率达

到了99.15%,相比BiLSTM-KAN和CPO-BiLSTM,分别

提升了1.5%和2.1%,进一步验证了 CPO、BiLSTM 和

KAN网络之间的协同作用对于恶意流量检测的有效性。
另外为了验证本文模型在少数类网络流量检测的性

能,将 本 文 模 型 与 传 统 模 型 在 CIC
 

UNSW-NB15
 

Augmented数据集的少数类样本进行网络恶意流量检测。
在该数据集中,Analysis、Backdoor和 Worms样本数量分

别为385、452和246,但在对这些流量类型的训练集均使

用了SMOTE过采样,以增加少数类样本的数量,减少类

别不均衡对模型的影响。各模型在对各少数类网络流量

检测的精确率如表7所示。
从表7可以看出,在 RNN、CNN 和 LSTM 模型中,

Backdoor精 确 率 分 别 为 23.71%、12.47% 和 5.53%,

Worms类别的精确率分别为0.89%、0.83%和1.54%,表
明过采样方法的使用未能明显提升传统模型在少数类网

络流量的检测性 能。相 比 之 下,本 文 模 型 在 Analysis、

Backdoor和 Worms类别上的精确率分别达到了35.33%、

78.09%和52.17%,与其他模型相比较有显著提升,表明

本文模型在少数类网络流量的检测能力得到增强。
综上所述,KAN网络通过自适应注意力机制增强了少

数类样本的特征提取能力,使模型更精准地学习Analysis和

Backdoor等少数类网络类别的模式特征,而CPO通过优化

训练策略,避免了多数类样本的主导效应,使 Worms等低频

类别的检测能力得到了显著提升。CPO-BiLSTM-KAN能

够有效提高少数类恶意流量检测的精准度。

  

表7 各模型对少数类样本检测的精确率

Table
 

7 The
 

accuracy
 

rates
 

of
 

each
 

model
 

for
 

detecting
 

minority
 

class
 

samples

类别 Analysis Backdoor Worms

RNN 0.247
 

3 0.237
 

1 0.008
 

9

CNN 0.245
 

5 0.124
 

7 0.008
 

3

LSTM 0.274
 

8 0.055
 

3 0.015
 

4

BiLSTM 0.302
 

7 0.720
 

9 0.254
 

7

BiLSTM-KAN 0.339
 

6 0.772
 

7 0.415
 

2

LSTM-KAN 0.288
 

5 0.183
 

0 0.058
 

4

CPO-BiLSTM 0.319
 

1 0.739
 

3 0.320
 

6

CPO-LSTM-KAN 0.327
 

3 0.490
 

2 0.105
 

3

PSO 0.331
 

3 0.502
 

0 0.269
 

2

GA 0.194
 

4 0.573
 

8 0.083
 

3

POA 0.223
 

7 0.735
 

3 0.414
 

6

CPO-BiLSTM-KAN 0.353
 

3 0.780
 

9 0.521
 

7

2.7 性能分析

  为评估模型的运算时间效率与计算资源消耗情况,本
文对不同模型的程序运行时间和内存占用进行了对比分

析,实验结果如图5所示。
在运行时间方面,传统模型因网络结构简单,运行时

间较短;而采用群智能优化算法的复杂模型,由于参数

搜索过程产生 计 算 开 销,运 行 时 间 增 加。本 文 提 出 的

CPO-BiLSTM-KAN模型运行时间为7134.65s,凭借

CPO算法高效的全局寻优能力,在保障检测精度的同

时减少了超参数搜索的迭代次数,运行效率优于PSO、

GA等同类优化模型,较传统优化算法节省20%~30%
的计算耗时。

在内存消耗方面,模型内存占用为3949.57MB,得益

于KAN网络的优化设计,通过非线性映射操作实现特征

维度的高效计算,内存利用效率显著优于PSO-BiLSTM-
KAN和GA-BiLSTM-KAN。并且内存占用控制在合理

范围。
实验结果表明,该模型在实现高精度恶意流量检测的

同时,兼顾了计算效率与资源消耗,适用于对实时性和部

署成本要求较高的网络安全场景。
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图5 不同模型程序总消耗和内存总消耗对比图

Fig.5 Comparison
 

chart
 

of
 

total
 

program
 

consumption
 

and
 

total
 

memory
 

consumption
 

of
 

different
 

models

3 结  论

  针对目前日益复杂的网络环境,原有的恶意流量检测

模型 难 以 取 得 有 效 的 检 测 效 果。本 文 提 出 的 CPO-
BiLSTM-KAN模型在恶意流量检测任务中表现出显著的

优势。通过引入冠豪猪优化算法对模型超参数的优化,模
型的性能得到了进一步提升。与BiLSTM和KAN网络结

合后,模型能够更能有效地捕捉恶意流量的时序依赖和非

线性特征,提高了对复杂攻击模式的适应能力。实验结果

表明,该模型在二分类和多分类任务中的性能均优于传统

的流量检测模型,特别是在少数类恶意流量的检测中显示

了较强的识别能力。同时,在运算时间效率与计算资源消

耗方面,本模型在不同规模网络环境中均展现出较好的适

应性。但是本文模型对于少数类恶意流量样本的识别精

确率仍有待提高,未来可以进一步研究数据集中少数类样

本的不平衡问题,寻求合适的方法增强少数类样本数量,
进一步提高模型准确率。
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