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Research on the detection method of network malicious traffic based on
CPO-BiLSTM-KAN

Liu Fengchun Wang Zihe Yang Aimin Yuan Shujuan Kong Shanshan
(College of Science, North China University of Science and Technology, Tangshan 063210, China)

Abstract: With the diversification of network attack means and the complication of traffic characteristics, the detection
of network malicious traffic is facing increasingly severe challenges. Traditional traffic detection methods gradually fail
to meet the needs of modern network environments in terms of accuracy and reliability, especially in the case of high-
dimensional data and complex attack patterns. To address the above issues, this paper proposes a network malicious
traffic detection model based on the Crested Porcupine Optimization Algorithm, Bidirectional Long Short-Term
Memory Network, and Kolmogorov-Arnold Network. The model uses the Bidirectional Long Short-Term Memory
Network to capture the bidirectional temporal features of traffic data, combines the nonlinear mapping of the
Kolmogorov-Arnold Network to enhance feature expression capabilities, and optimizes hyperparameters through the
Crested Porcupine Optimization Algorithm to improve model performance. Experiments are conducted using the CIC
UNSW-NB15 enhanced dataset. The experimental results show that the model achieves accuracies of 99.12% and
94.15% in binary classification and multi-classification tasks. respectively, significantly outperforming other models.
In addition, when dealing with class imbalance, the model particularly enhances the detection capability for minority
class samples such as Backdoor and Worms.

Keywords: malicious traffic detection; bidirectional long short-term memory network; Kolmogorov-Arnold network;

crowned porcupine optimization algorithm
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Fig. 2 KAN network structure diagram
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for t = 1 to max_iter do:

for i = 1 to num_agents do:

HBIERNE : fitness[i] = obj_function(positions[i])
PR AL if fitness[i] << best_score then best_score = fitness[i ]

end for

for i = 1 to num_agents do:
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Xt 3 67 B N FH R AR new _position = clip (new_position s 1b, ub,kb)
T IE B cnew_ fitness = obj _ function (new_position)

PH R if new_ fitness << best_score then best_score = new_ fitness

end for
end for
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Table 1 Sample distribution of the CIC UNSW-NB15
Augmented dataset
ki A Kt
Generic 4632
Dos 4 467
Analysis 385
Backdoor 452
Shellcode 2102
Exploits 30 951
Fuzzers 29 613
Reconnaissance 16 735
Worm 246
SSLE TR i 89 583
TE W L 358 332
B 447 915

0K FE R 3 S DI 25 000 3 4 AR L 7R ) 23 o e v R O
JE AR T 3 R At A A 28 3 i 1T 4 A0 0 3K 4 v Y B 41
— B0 I SMOTE i R A 77 3 K8 I G5 48 /0 B A AR it
A B A0 1 i, DR D 28 00 A DI 2 AR v B9 RE A B 167
e G B A YN R B v G 1) T 22 RO AR AR SR T L 4R T R



$) R A AT CPO-BILSTM-KAN # M %4 & & A4 5 2R

%1

X B A B R TN RE T
2.2 EMIERR

M AR A SRR CPO-BILSTM-KAN 75 R 4 % 8 7
SERTAT S5 A BT AT A SCR A LA T PR FE A5 -

D HERIZ (Accuracy) « 1 B 2 2 7R 485 50 1E 8 43 25 (1) B
A B Y L R S W R T AR AR, TR A S
KADFIR,

Accuracy = TP & fﬁif:Jrl‘N (1D

Hoo, TP(true positive) & 7~ i 1E il . BIAS B 1 #ff 15 51
Y A AN TN (true negative) 7 B 6], BIAR
RUTE A P50 H B4 IE B U FE A B FP (false positive) 7R
B I f51) RIS TR TE 86 i o 15 40 o 00 3 I e M RE AR B FN
(false negative) 7R {2 7 4] , RIS R4 0 22 O & 152 4 R IE
B AR AR

2) K5 1 % (Precision) : A B 2 & 7% 450 50 Fi 0 4 3% & Y
it S5 R R R A LU AE e B TS TR 0 45 SR i T
e, HHREAR MK A2 PR,

.. TP

Precision = TP L FP a2

3) A MK (Recall) « A [ R 7R 52 FR A % B i
PRSI TE AR PR Y LA S e TR T X S O 1 IR
AEJ1 . HEARX MK A3 IR,

TP
Recall - m (13)

OF1 B (F1 Score) : F1 B R AR 4 143 [\ 32 (14 7 1
TEIE ReE 25 A IS RN M RE . TR A= AD PR,

. 2XTP

= TP 1 FP T FN (an
2.3 SLIGINEE

AR SE 6 ) B2 /E R 48 28 Ubuntu 9. 4. 0-lubuntul ~
20. 04. 2,GPU & NVIDIA GeForce RTX 3090, N7E 24 GB,
fii [l Python 3. 8 %% . i il Pytorch IREE"# SJHESE ,

2.4 ZHESLRE

TEZ R AR AR 77 A 2
BWA 5B 4ERE . N softmax /E b 800G 2880, B IE# IR
HHUE B T 42

R B Sl P 0 B Al AT U 4, DN R 25 R 2 5
JH IR A 04 X A B SR AT 1A . SRR Ay 2 B
EEREXT L2 2 FoR .

IFE 2 PRI LLE AR SO A HE B 2R A 3 99. 1205,
WA T oAt 6 ARSI, 3 R W AR SO TR Y o R ME L E
46 W U S A T M R RN 8 Y LR, AR U R 7R
MR eGSR F1 OB 1w T H A 6 P A, 7 So
RURRE B % R 99. 1590 . 3% B 2 A% T80 A % 3 Ui 3k A I 7 T
B 1 I 2R AR 5 A SCRBE RN (9 49 0] 258 99. 20 %6 , & B iz A 7Y
e PR R 5 R R T R R RS R 2
AR ARSCHERI F1 R 99.17%, HHiZ AR B E

R2 BEBAEZHEBEREITLE
Table 2 Performance comparison of each model in

binary classification

i 75 Precision Recall Fl-score  Accuracy
CNN 0.956 3 0.955 8 0.956 1 0.955 6
RNN 0.957 5 0.958 2 0.957 8 0.957 3
LSTM 0.966 4 0.967 1 0.966 7 0.966 2
PSO 0.978 0 0.978 7 0.978 3 0.977 5
GA 0.976 0 0.976 7 0.976 4 0.976 1
POA 0.979 5 0.980 1 0.979 8 0.979 3
ACHIR 0.9915  0.9920  0.9917  0.9912
B T e

L5 B BT AR SOASE R AR A B R RS B R L A IR FL
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Table 3 Overall accuracy rates of each model in

multiple classifications

LAY Accuracy

RNN 0. 898 8

LSTM 0.900 8

CNN 0.888 7

PSO 0.926 8

GA 0.929 7

POA 0.930 8
CPO-BiLSTM-KAN 0.9415

M 3 LIRS H A AL Lb, AR SOBERL AE 2432
S RO Y E A R A IR 4 R R R AL R B T 94.15%,
T H bl B8 R 43 4R & T 4.27%6.4.07%. 5. 28% .
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o 245 ik AR L I LR A% B2 1 0 R U A R T R

24N G 0 0 28 3L R R ARORE B SR A 4 TR L 4%
AL TE G I o0 £ 38 B B F1OBE LI 5 TR,
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it (Benign) 28 5] v, 2 SCRE AU (5 i 2235 3] 99. 95% , R M
ARG MET X A IEH e 5 RS E . W%
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Table 4 Accuracy rates of each model in multiple classifications
el RNN LSTM CNN PSO GA PAO AR
Benign 0.999 8 0.999 8 0.999 9 0.989 9 0.993 6 0.991 6 0.992 5
Analysis 0.247 3 0.274 8 0.2455 0.3313 0.194 4 0.2237 0.353 3
Backdoor 0.237 1 0. 055 3 0.124 7 0.502 0 0.573 8 0.735 3 0.780 9
DoS 0.293 4 0.294 0 0.324 7 0.453 3 0.619 0 0.655 2 0.656 2
Exploits 0.885 4 0.877 1 0.902 2 0.7377 0.732 4 0.767 4 0.910 7
Fuzzers 0.638 3 0.633 8 0.739 8 0. 606 6 0.602 6 0.596 8 0.714 8
Generic 0.598 5 0.640 4 0.622 4 0.744 8 0.730 4 0.759 9 0.789 6
Reconnaissance 0.676 6 0.798 6 0.818 3 0.8313 0.861 3 0.819 8 0.862 3
Shellcode 0.220 7 0.183 1 0.175 3 0.342 9 0.376 5 0.352 0 0.387 4
Worms 0.008 9 0.015 4 0.008 3 0.269 2 0. 083 3 0.414 6 0.5217
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Table 5 F1 metrics of each model in multi-classification
2 RNN LSTM CNN PSO GA PAO AR SRR
Benign 0.986 6 0.986 8 0.986 6 0.986 6 0.988 0 0.987 3 0.987 6
Analysis 0.387 6 0.393 6 0.384 2 0.142 9 0.123 9 0. 065 2 0.408 5
Backdoor 0.3239 0.1012 0.205 1 0.3919 0.453 6 0.403 2 0.466 2
DoS 0.342 2 0.3516 0.354 5 0.2215 0.2335 0.173 5 0.402 1
Exploits 0.665 5 0.689 0 0.639 0 0.739 1 0.749 7 0.750 8 0.754 8
Fuzzers 0.625 6 0.631 4 0.622 3 0.6911 0.715 8 0.712 5 0.717 6
Generic 0.647 2 0.677 2 0.657 5 0.624 9 0.659 2 0.658 1 0.662 5
Reconnaissance 0.701 9 0.729 1 0.732 7 0.729 5 0.740 3 0.7356 0.749 3
Shellcode 0.3039 0.264 1 0.263 8 0.1371 0.210 5 0.210 4 0.272 2
Worms 0.017 5 0.019 6 0.016 4 0.186 7 0.054 8 0.327 8 0.333 3
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Table 6 Ablation experiment results

il Precision Recall Fl-score Accuracy
BiLSTM 0.9685 0.9690 0.9687 0.968 2
BILSTM-KAN  0.976 5 0.977 1 0.976 8 0.976 3
LSTM-KAN  0.9754 0.976 2 0.9758 0.975 3
CPO-BILSTM ~ 0.9705 0.9711 0.9708 0.970 3
CPO-LSTM-KAN 0.977 4 0.978 1 0.977 7 0.977 2
2 A 0.9915 0.9920 0.9917 0.991 2

MF 6 I LIE 1, BILSTM-KAN #l LSTM-KAN [ #5
W43 5k 97. 65201 97. 54 % 1l #H BERLAE T AL,
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Table 7 The accuracy rates of each model for

detecting minority class samples

28 5 Analysis  Backdoor =~ Worms
RNN 0.247 3 0.237 1 0. 008 9
CNN 0.245 5 0.124 7 0.008 3
LSTM 0.274 8 0.055 3 0.015 4
BiLSTM 0.302 7 0.720 9 0.254 7
BiILSTM-KAN 0.339 6 0.772 7 0.415 2
LSTM-KAN 0.288 5 0.183 0 0. 058 4
CPO-BILSTM 0.319 1 0.739 3 0.320 6

CPO-LSTM-KAN 0.327 3 0.490 2 0.105 3

PSO 0.3313 0.502 0 0.269 2
GA 0.194 4 0.573 8 0.083 3
POA 0.2237 0.735 3 0.414 6

CPO-BILSTM-KAN 0.353 3 0.780 9 0.5217
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Fig.5 Comparison chart of total program consumption and total memory consumption of different models
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