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Research on defect detection technology of aluminum profile
workpiece based on improved YOLOv12

Jing Huicheng Bao Chengming
(School of Electrical Engineering, North China University of Science and Technology, Tangshan 063210, China)

Abstract: To address the issues of low detection accuracy and missed or false detections of small defects in aluminum
profile production, this paper proposes an improved YOLOvI12n-based method, termed YOLO-PCSU, for surface
defect detection. First, a novel A2C2{-PConv structure is designed by integrating PartialConv into the A2C2{ module of
YOLOv12n, enhancing feature extraction while reducing redundant computation and memory access. Second,
CoordAttention is introduced into the backbone to improve detection accuracy without increasing computational cost.
Third, the SEAM attention module is added to the detection head to mitigate missed and false detections of small
targets. Finally, the U-lIoU loss replaces the original CloU loss to accelerate convergence and enhance prediction
precision. Experiments on an aluminum profile defect dataset demonstrate a detection accuracy of 90. 3% , with a 2. 3%
mAP@ 0.5 improvement over the baseline YOLOv12n, a 9% reduction in parameters, and a 14% reduction in
computation. Additional evaluations on the VOC2012 and Northeastern University hot-rolled strip steel surface defect
datasets confirm the robustness of the proposed approach.

Keywords: surface defect detection; YOLOv12n; SEAM;loss function
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Fig. 15 Two paint bubble defects in the image
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dataset optimization
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