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Deep-sea image enhancement algorithm based on
improved U’-Net and GAN

Zhang Zequn Zhang Chuntang Fan Chunling
(College of Automation and Electronic Engineering, Qingdao University of Science and Technology.Qingdao 266061, China)

Abstract: High-quality deep-sea images are essential for the development of marine biology, topography and geology
etc. In order to solve the problems of color distortion, image blur and low contrast in deep-sea images. we propose a
deep-sea image enhancement network using improved U’-Net as the GAN generator. Firstly, the RSU module is
introduced in U-Net to enhance the fusion of high-level and low-level information in the network. Secondly, the DA
mechanism is introduced in the skip connection of U*-Net, which is used to enhance the interrelationship between the
space and channel of the image, and extract the underwater color and texture details. Then, U’-Net with the DA
mechanism, is used as the generator of GAN to enhance the realism of the image in the adversity. In addition. a new
loss function with edge loss and perceived loss is reconstructed, called DS-Loss and the mapping relationship between
deep-sea images and target images of U’-GAN is guided by DS-Loss from multiple perspectives. Finally, U*-GAN is
compared with seven advanced underwater image enhancement algorithms on the self-built dataset DSIED. Compared
with the second-place Sea-Pix-GAN, U?*-Net improves by 5.6%, 3.9%, 5.2%, 16.0%, 7.1% and 2.4% in PSNR,
SSIM, IE, UIQM, UCIQE, and PCQI, demonstrating better underwater image enhancement effects.

Keywords: deep-sea image enhancement;generative adversarial network; U*-Net;attention mechanism
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