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Ultra-short term wind power prediction based on multi-scale feature fusion

Gao Lu'  Zhuang Qingze! Zhang Fei® Qin Ling' Wu Xilin®
(1. School of Digital and Intelligent Industry, Inner Mongolia University of Science and Technology,Baotou 014010, China;
2. School of Automation and Electrical Engineering, Inner Mongolia University of Science and Technology,Baotou 014010, China;
3. Rail and Beam Rolling Mill, Baotou Steel Joint Stock Co. , Ltd. ,Baotou 014010, China)

Abstract: In light of the significance of wind power within the energy landscape and the challenges posed by its
intermittency, this paper proposes an end-to-end, ultra-short-term wind power multi-step prediction model that
integrates outlier processing and multi-scale feature fusion. The objective is to enhance the accuracy and stability of
ultra-short-term wind power predictions, thereby providing robust support for the reliability of power system
scheduling and operation. First, the RobustTSF method is employed to address time series anomalies, providing a
strong assurance of the prediction model’s robustness and minimizing the disparity between abnormal time series
prediction and noise label learning. Secondly. the integration of the spatial pyramid matching mapping strategy. Levy
flight strategy, and adaptive T-distribution mutation strategy enhances the dung beetle optimization algorithm,
significantly improving its global search capability and convergence efficiency. Meanwhile, the multi-strategy dung
beetle optimization algorithm is utilized to optimize the hyperparameters of the enhanced TimeMixer model, resulting
in optimal model performance. Finally, the CATimeMixer model is employed to achieve the fusion and prediction of
multi-scale seasonal features and trend features. The experimental results indicate that the MAE, RMSE, and MSE
decreased by 49.71% ., 41.26% , and 65. 50% , respectively, compared to the benchmark model multilayer perceptron,
while the R” value increased by 4. 49%. This demonstrates a significant reduction in prediction error and offers a novel
approach for the accurate prediction of ultra-short-term wind power.

Keywords: multi-step prediction of ultra-short term wind power; outlier processing; multi-scale feature fusion; multi-

strategy dung beetle optimization algorithm
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CATimeMixer 1.857 3.249 10.559 0.973
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Fig. 4 Fitting graph of ablation experiment results
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Table 2 Model evaluation metrics proposed for

different datasets

FAEIE MAE RMSE MSE R’
e 1 1. 663 2.979 8. 876 0.978
BIELE 2 3.294 5.337 28. 486 0.972

4.4 ZH BT LW

R T AR B 1 B E AR SR A P B A
SCHT B AN 55 A X w2 N R ) IR o 5 T 45
) 2 T TS A AT T 22 A0 T X BL ST AR, ik S AL 4
E BILSTM™* [ TCN"** | Nons-Transformer L & & 2 i A
Ay A AL CNN-LSTM™ (VMD-CNN-LSTM,
VMD-DBO-CNN-LSTM) , 52 5 P14y 48 br 45 I 4% 3 FioR.
Sk T T O b R R A AR ) T B AR PR R A R Y

1000 AN, WK 5.6.7 Fizs . il LAFE Bl & 000 45 K g 14
i B BT A Ak P 52 2 LU 2l B K Y RUH T SR B4R A
BEA T T I (H AR SCRT R BRI AE 1 28 2 260 4 25 v KU I
SRIFOM v 147 R I A e v 1) TR 2 L S RO L
SR, BN T L AE 4 A8 B0 A AR SR AR R 45 VMD-
DBO-CNN-LSTM ) MAE. RMSE., MSE 43 %l B i T
36.64% .18.25%.33. 16 %, [ I} R2 $&FA T 1. 14% ;7 2 &
T e, AE AR AL M 45 RS 2 Transformer B MAE.RMSE,
MSE 43 A% T 36. 58%.26. 67% .46. 24 % , [7] i R* $2 F+
T 0.92% 7€ 1 BT b, #HER IR AR ) 46 DBO-CNN-LSTM
) MAE. RMSE. MSE 4 Jill B& ik T 23.92%. 19.10% .,
34. 71% . [RIAT R* $2F T 0. 3%, 3X T840 1E B T A SC A% Al 7
2 SO DRy SR o ) I A AR ST B A AR 1 ) A R
FEARIAE LR JLASJ5 1 : Robust TSF A & Ak ¥ &5 B, -
T ASE A AL T AT S ) BOHE F A, MSDBO 3 3 =5 20
ZHEALAL, B8 Th T AR B I S B RS . CATimeMixer
RT3 114 22 RUBE AR AIE il 75 WU £ F Ak BN TR) RUBE 8 371 AR A
MR Ak S5 G B FRRTE B AL, FE o0 4 88 T B[R] T 51
1) J5) 38 R AE AN 42 JR AR . &% 1 T 38 . Robust TSF-MSDBO-
CATimeMixer #5805 5 LA E 3 R it iy 454 76 8 48 1 X
FEL T R U e 3 B LR A v ARG RIRR R L Ol i U S B g
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Table 3 Evaluation indicators of comparative experiments

A X _ , . DBO-CNN- VMD-DBO- e[S AP 4
B ik BILSTM - TCN LSTM CNN-LSTM  Transformer e
MAE 1. 426 1. 583 1.176 2.076 1. 103 0. 895
RMSE 2.225 2. 436 1. 901 2. 949 1.917 1.538
r MSE 4.953 5.932 3. 615 8.700 3. 625 2.360
R’ 0. 988 0. 985 0. 991 0.974 0. 990 0. 994
MAE 2. 604 2. 554 1. 848 2. 205 1. 282 1.172
RMSE 3.908 3.902 2. 812 2.937 2.238 2.062
v MSE 15.269  15.229 7.907 8. 627 5.009 4.251
R’ 0. 962 0.963 0. 980 0.979 0. 987 0. 989
MAE 2.951 3.152 2.914 2. 625 2.194 1. 663
RMSE 4. 581 4.714 4.414 3. 644 3. 696 2.979
v MSE 20.984  22.221 19. 486 13. 279 13. 659 8.876
R? 0. 948 0. 945 0. 952 0.967 0. 966 0.978
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Fig. 5 One-step prediction result fitting graph
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Fig. 7 Four-step prediction result fitting graph
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