
  电 子 测 量 技 术

ELECTRONIC MEASUREMENT TECHNOLOGY
第49卷 第1期

2026年1月 

DOI:10.19651/j.cnki.emt.2518584

基于多尺度特征融合的超短期风电功率预测*

高 鹭1 庄庆泽1 张 飞2 秦 岭1 邬锡麟3

(1.内蒙古科技大学数智产业学院
 

包头
 

014010;
 

2.内蒙古科技大学自动化与电气工程学院
 

包头
 

014010;

3.包钢钢联股份有限公司轨梁轧钢厂
 

包头
 

014010)

摘 要:鉴于风电在能源结构中的重要性及其间断性带来的挑战,本文提出了一种基于异常值处理和多尺度特征融
合的端到端超短期风电功率多步预测组合模型,旨在提高超短期风电功率预测的精确度与稳定性,进而为电力系统调
度与运行的准确性与稳定性提供有力支撑。首先,通过RobustTSF方法处理时间序列异常,为预测模型的鲁棒性提
供有力的保障,减少了异常时间序列预测和噪声标签学习之间的差异。其次,融合空间金字塔匹配映射策略、Levy飞
行策略以及自适应t分布变异策略对蜣螂优化算法进行改进,显著提高了全局搜索能力和收敛效率。同时,利用多策
略蜣螂优化算法优化改进的TimeMixer模型的超参数,以获得最优的模型性能。最后使用CATimeMixer模型,实现
了多尺度季节特征和趋势特征的融合和预测。实验结果表明,相较于基准模型多层感知机的 MAE、RMSE、MSE分
别下降了49.71%、41.26%、65.50%,同时R2提高了4.49%,能够有效降低预测误差,为超短期风电功率的准确预测
提供了一种新的方法和思路。
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Abstract:In
 

light
 

of
 

the
 

significance
 

of
 

wind
 

power
 

within
 

the
 

energy
 

landscape
 

and
 

the
 

challenges
 

posed
 

by
 

its
 

intermittency,
 

this
 

paper
 

proposes
 

an
 

end-to-end,
 

ultra-short-term
 

wind
 

power
 

multi-step
 

prediction
 

model
 

that
 

integrates
 

outlier
 

processing
 

and
 

multi-scale
 

feature
 

fusion.
 

The
 

objective
 

is
 

to
 

enhance
 

the
 

accuracy
 

and
 

stability
 

of
 

ultra-short-term
 

wind
 

power
 

predictions,
 

thereby
 

providing
 

robust
 

support
 

for
 

the
 

reliability
 

of
 

power
 

system
 

scheduling
 

and
 

operation.
 

First,
 

the
 

RobustTSF
 

method
 

is
 

employed
 

to
 

address
 

time
 

series
 

anomalies,
 

providing
 

a
 

strong
 

assurance
 

of
 

the
 

prediction
 

model's
 

robustness
 

and
 

minimizing
 

the
 

disparity
 

between
 

abnormal
 

time
 

series
 

prediction
 

and
 

noise
 

label
 

learning.
 

Secondly,
 

the
 

integration
 

of
 

the
 

spatial
 

pyramid
 

matching
 

mapping
 

strategy,
 

Levy
 

flight
 

strategy,
 

and
 

adaptive
 

T-distribution
 

mutation
 

strategy
 

enhances
 

the
 

dung
 

beetle
 

optimization
 

algorithm,
 

significantly
 

improving
 

its
 

global
 

search
 

capability
 

and
 

convergence
 

efficiency.
 

Meanwhile,
 

the
 

multi-strategy
 

dung
 

beetle
 

optimization
 

algorithm
 

is
 

utilized
 

to
 

optimize
 

the
 

hyperparameters
 

of
 

the
 

enhanced
 

TimeMixer
 

model,
 

resulting
 

in
 

optimal
 

model
 

performance.
 

Finally,
 

the
 

CATimeMixer
 

model
 

is
 

employed
 

to
 

achieve
 

the
 

fusion
 

and
 

prediction
 

of
 

multi-scale
 

seasonal
 

features
 

and
 

trend
 

features.
 

The
 

experimental
 

results
 

indicate
 

that
 

the
 

MAE,
 

RMSE,
 

and
 

MSE
 

decreased
 

by
 

49.71%,
 

41.26%,
 

and
 

65.50%,
 

respectively,
 

compared
 

to
 

the
 

benchmark
 

model
 

multilayer
 

perceptron,
 

while
 

the
 

R2
 

value
 

increased
 

by
 

4.49%.
 

This
 

demonstrates
 

a
 

significant
 

reduction
 

in
 

prediction
 

error
 

and
 

offers
 

a
 

novel
 

approach
 

for
 

the
 

accurate
 

prediction
 

of
 

ultra-short-term
 

wind
 

power.
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0 引  言

  在当今全球能源转型的进程中,化石能源的过度消耗

导致了大气污染和温室效应等环境问题,对人类社会和自

然环境构成了严重威胁[1],风电作为一种清洁、可再生的能

源,其开发和利用受到了广泛的关注。然而,受多种因素的
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影响,风电输出功率呈现出显著的波动性和不确定性,这对

电力系统的稳定运行和调度规划提出了严峻挑战。在此背

景下,风电功率的精准预测已成为当前亟待解决的关键问

题。超短期风电功率预测作为风电功率预测中的重要一

环,高效、准确的预测模型有利于提升风能的利用率、降低

运营成本、保障电网的安全稳定[2]。总结目前主流的超短

期风电功率预测模型,主要可以分为物理模型、统计模型和

深度学习模型[3]。物理模型基于数值天气预报技术,模拟

风速和气象条件对风电出力的影响,并使用流体动力学进

行精确建模。然而,物理模型计算复杂,对初始条件敏感,
需要大量的计算资源[4]。统计模型依据历史风电功率和气

象规律建立非线性映射关系实现功率预测,但面对较强非

线性数据时模型预测效果较差[5]。随着硬件设施和技术的

进步,深度学习模型能进一步提升预测能力,例如长短期记

忆神经网络(long-short-term
 

memory
 

network,
 

LSTM)[6],门
控循环单元(gated-recurrent-unit,

 

GRU)[7],双向长短期记

忆网 络 (bidirectional
 

long-short-term
 

memory
 

network,
 

BiLSTM)[8],时 间 卷 积 网 络 (temporal
 

convolutional
 

network,
 

TCN)[9]等,但单一模型在复杂任务中仍存在一

定的局限性。研究人员观察到,组合模型可以进一步提高

预测准确性,从而促使各种组合方法的广泛采用[10]。
在实际风电功率预测中,时间序列数据常常受到多种

因素的干扰,导致各种异常值的产生。传统的存在异常数

据的时间序列预测方法通常采用“检测-修复-再训练”的流

程,即先通过模型进行异常检测并对异常值进行修复,或是

简单的插补替换。程先龙等[11]提出了一种结合变分模态

分解(variational
 

mode
 

decomposition,VMD)、反 向 传 播

(back
 

propagation,
 

BP)、BILSTM 的组合模型,该模型首

先通过计算相邻数据的平均值来检测并替换原始数据中的

异常值,接着对数据进行归一化处理,以降低不同数据间的

差异和干扰。预处理结束后,运用 VMD将历史功率分解

为多个不同的模态分量。之后,将这些模态分量以及对应

的气象数据等输入到BP和BiLSTM 的组合模型中,对各

分量进行预测后线性叠加。但这些方法在异常值处理过程

中可能引入额外的误差和不确定性,进而影响预测精度。
此外,在优化算法研究领域,近年来涌现的新型优化方

法已在诸多优化问题中展现出优异的性能。范斌等[12]提

出了一种对风电场的所有风机进行超短期功率预测的组合

模型,该 模 型 结 合 了 粒 子 群 优 化 算 法 (particle
 

swarm
 

optimization,
 

PSO)、支持向量机(support
 

vector
 

machine,
 

SVM)和AdaBoost算法。首先,他们采用基于残差孤立森

林的方法对数据进行异常值检测和预处理。随后,利用

PSO对SVM的参数进行优化。接着,将训练好的SVM作

为AdaBoost算法的基础回归模型,通过多次迭代训练多个

SVM模型,并优化其权重,最终构建出一个性能更强的集

成回归模型。但是,这些优化算法在实际应用过程中仍存

在陷入局部最优和收敛效率不足等亟待解决的问题。

在风电功率预测领域,现有研究多采用分解后独立预

测各分量再线性叠加的频率尺度特征融合策略,谢金财

等[13]提出了一种风电功率预测模型 VMD-GRAU。首先

运用
 

VMD对风电数据进行分解;通过设置注意门提高

GRU对关键序列特征的提取能力,引入误差修正模块以削

减风电功率预测的随机波动性,并在损失函数里嵌入稀疏

正则化项,以防模型过拟合风险。最后将 VMD分解后的

各分量输入到模型中再线性叠加。这种策略缺乏对其他尺

度特征之间复杂交互关系的深入挖掘。除频率尺度特征融

合外,部分研究尝试从时空尺度进行特征融合,任润虎

等[14]提出一种融合静态邻接矩阵和动态邻接矩阵的时空

自适应模型。首先,基于风电场各节点之间的空间距离和

差分相似性特征,预先构建一个静态邻接矩阵。接着,通过

时空自注意力机制提取数据的高维特征,并生成时空嵌入

矩阵,该矩阵用于指导动态邻接矩阵的生成。最终,将

GRU与图神经网络相结合,融合预先定义的静态邻接矩阵

和实时生成的动态邻接矩阵,利用时空自适应图卷积循环

模块完成风电功率的预测任务。但往往面临计算复杂度

高、模型可解释性差等问题,难以在实际工程中大规模推广

应用。
本文针对上述问题,提出了一种基于异常值处理和多

尺度特征融合的端到端超短期风电功率多步预测组合模

型,该模型在数据处理、优化算法以及多尺度特征融合架构

这3个关键环节进行了创新性改进。首先,在数据处理阶

段,模型采用RobustTSF方法对风电功率序列数据进行异

常值处理。传统方法在处理异常值时,往往存在流程复杂

和样本选择不合理等问题。而RobustTSF方法对风电功

率序列数据进行异常值处理,通过结合趋势分析与样本选

择,有效识别并剔除异常数据,从而提高模型对原始数据的

鲁棒性,且无需检测-修复-再训练过程,弥补了异常时间序

列预测(abnormal
 

time
 

series
 

prediction,
 

TSFA)和噪声标

签学习(noise
 

label
 

learning,
 

LNL)之间的差距。其次,在
优化 算 法 方 面,空 间 金 字 塔 匹 配 (spatial

 

pyramid
 

matching,
 

SPM)映射策略、Levy飞行策略以及自适应t分

布变异策略改进蜣螂优化算法(dung
 

beetle
 

optimization
 

algorithm,
 

DBO)解决了算法容易陷入局部最优且收敛速

度相对较慢的局限性。同时,利用多策略蜣螂优化算法

(multi-strategy
 

dung
 

beetle
 

optimization
 

algorithm,
 

MSDBO)
对 改 进 的 TimeMixer 模 型 的 超 参 数 进 行 优 化,为

CATimeMixer模型的性能优化提供了有力支持。最后,在
多尺度特征融合架构中,风电功率预测领域多尺度特征融

合方法多侧 重 于 不 同 频 率 尺 度 或 空 间 尺 度 简 单 组 合,

CATimeMixer从一种新的多尺度特征融合视角来处理时

间序列的复杂时间变化,利用解耦变化和来自趋势和季节

尺度特征融合序列的互补预测能力实现了超短期风电功率

预测的稳定性和准确性。
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1 RobustTSF

  异常值是指那些显著偏离其他数据的观测值,它们可

能由于测量错误、数据录入错误、系统故障或其他特殊情况

而产生。由于异常值对预测模型的影响是多方面的,包括

模型拟合偏差、预测精度下降、计算效率降低以及模型鲁棒

性降低等,所以通常要对异常值进行处理。

RobustTSF[15]方法借鉴LNL,为LNL和TSFA任务

之间搭建了一座桥梁。作为一种模型无关的异常值处理方

法,它能够轻松适应不同的深度学习架构,但仍面临着

TSFA任务中同时处理协变量和目标中的异常的挑战。其

创新地摒弃了传统的异常修复步骤,并减少了数据的不连

续性问题,通过结合趋势分析与样本选择,直接从原始输入

时间序列中识别出信息样本。具体而言,首先对输入数据

进行噪声添加和趋势滤波处理,从趋势滤波的结果中提取

拟合后的趋势数据。随后计算输入数据和趋势数据之间的

误差,并对每个样本的误差计算异常分数。接着根据异常

分数筛选出符合条件的样本索引,并基于这些索引从原始

数据中筛选出满足条件的样本,确定哪些样本受到异常的

影响较小,从而能够更准确地反映时间序列的内在规律,有
效提升了模型在面对噪声和异常值时的性能表现,且无需

检测-修复-再训练过程。令A(x~n)表示 (x~n,sn)的异常评

分,x~n 为输入序列,sn 是xn 的趋势,定义如式(1)所示。

A x~n  =∑
K

k=1
w(k)· x~k

n -sk
n (1)

式中:K 为输入长度,x~k
n 和sk

n 分别为x~
n 和sn 中的第k 个

值,x~k
n -sk

n 为时间步长k的异常程度,w(k)为连续脉

冲函数。

2 MSDBO-CATimeMixer

2.1 MSDBO
  在优化算法领域,DBO[16]作为一种新兴的优化方法,
已在多种优化问题中表现出良好的性能。然而,与其他优

化算法类似,DBO在实际应用中仍面临局部最优陷阱和收

敛速 度 较 慢 等 挑 战。为 解 决 这 些 问 题,本 文 提 出 了

MSDBO,该算法结合了SPM 映射策略、Levy飞行策略和

自适应t分布变异策略,以增强算法的全局搜索能力和收

敛效率。

1)SPM映射

混沌映射是一种随机的、复杂的方法,用于替代优化算

法随机初始化方法,它具有提高算法的随机性、多样性、收
敛速度和跳出局部最优解的能力,已被应用于各种优化算

法中。SPM映射通过对优化问题的搜索空间进行多尺度

划分,展现出高度的随机性和不可预测性。其核心机制是

通过模运算在不同条件下生成均匀分布的随机数序列,从
而使蜣螂优化算法中的个体初始化分布更加均匀。这种特

性有助于算法更全面地探索解空间,增强全局搜索能力。

2)Levy飞行

Levy飞行是由法国数学家Levy提出的一种随机游走

策略,其步长服从重尾概率分布。与正态分布等常见分布

相比,Levy飞行更频繁地产生较大的步长,从而能够探索

更广阔的空间,增强解空间的多样性。通过引入Levy飞行

策略对小蜣螂觅食的位置信息进行更新,可以使蜣螂优化

算法中的个体在搜索空间中广泛分布,进而提升全局寻优

能力,避免陷入局部最优,Levy飞行如式(2)所示。

Levy=0.01·μ·η/|v|(1/α) (2)
式中:μ、η表示(0,1)范围内均匀分布的随机数,α 表示0
为均值η为方差的随机数。η的计算公式如式(3)所示。

η=
Γ(1+α)·sin(πα/2)

Γ((1+α)/2)·α·2(α-1)/2  
(1/α)

(3)

式中:Γ(x)= (x-1)!。

3)自适应t分布变异

在DBO中,个体在迭代后期倾向于快速聚集到当前最

优位置附近,导致种群的搜索能力大幅度减弱,容易陷入最

优解。为了解决这种问题,引入自适应t分布变异策略,该
策略可以根据算法的运行状态和个体的适应度动态调整变

异强度,既能提高全局搜索能力,帮助算法跳出局部最优。
同时又能够加强局部搜索性能,从而提高解的精度。通过

自适应t分布变异策略对蜣螂个体最终的位置信息进行更

新,t分布概率函数为式(4)所示。

p(x)=
Γ(n+1/2)

nπ·Γ(n/2)
·(1+x2/2)-(n+1)/2 (4)

式中:Γ(·)是为第二型欧拉积分,迭代次数n 为参数自

由度。

2.2 CATimeMixer
  TimeMixer[17]采用了创新的多尺度特征融合架构,由
过去可分解融合(past

 

decomposable
 

mixing,
 

PDM)和未来

多预测器融合(future
 

multipredictor
 

mixing,
 

FMM)构成,
其中,PDM 结 构 用 于 序 列 解 耦 和 多 尺 度 特 征 融 合,而

FMM结构则用于未来预测。两大结构都采用多层感知机

(multilayer
 

perceptron,
 

MLP)架构,能有效处理时序数据

在不同时间尺度上的变化,从而实现了超短期预测任务上

的卓越性能。
具体而言,由于不同尺度的时间序列表现出不同的特

性,精细尺度主要捕捉细节模式,而粗尺度则反映宏观变

化。因此,首先通过平均下采样生成多尺度序列X={X0,

X1,…,XN},模型在实现超短期预测任务中固定尺度为

4。尽管真实世界的时间序列具有高度复杂性,即使是最粗

尺度的序列也呈现出复杂变化,同时包含明显的季节性和

趋势性特征。因为季节性和趋势性在时间序列分析中分别

对应短期和长期变化,具有不同的特征属性。所以,通过序

列分解结构将多尺度风电功率序列xm 分解为季节分量

Tm ={tm
0,tm

1,…,tm
N}和趋势分量Sm ={sm

0,sm
1,…,sm

N},如
式(5)所示,并提出利用堆叠的PDM 结构,将多尺度风电
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功率序列分解后的季节分量和趋势分量分别在不同尺度上

进行融合,而非简单地整体混合,如式(6)所示。

tm
n,sm

n =SeriesDecomp(xm
n),n {0,1,…,N} (5)

xm =xm-1+FeedForward(T-Mix({sm
n}Nn=0)+S-

Mix({tm
n}Nn=0) (6)

式中:m 为第m 个PDM结构,FeedForward(·)包含两个

线性层,层之间的 GELU 激活函数,即 MLP架构,T -
Mix(·),S-Mix(·)表示季节分量和趋势分量融合。在

季节分量融合中,采用自下而上的方法从较低级别的细尺

度时间序列向上整合信息,为粗尺度的季节部分建模补充

详细的信息。而对于趋势分量,则采用自上向下的融合方

法,利用粗尺度的宏观知识来指导更细尺度的趋势建模。
在经过PDM结构后进入FMM结构,表示为式(7):

x̂n =predictorn(xm
n),n􀆠{0,1,…,N},x̂ =∑

N

n=0
x̂n (7)

式中:x̂n 表示来自第m 个风电功率尺度序列的未来预测,

最终输出为x̂。predictorn(·)表示第m 个尺度序列的预

测器,依然为 MLP架构,其中包含两个线性层,层之间的

激活函数。FMM 是多个预测器的集合,其中不同的预测

器基于来自不同尺度序列的过去信息,使FMM 能够集成

融合多尺度特征的互补预测能力。
为了进一步提高模型的预测能力,本文在TimeMixer

模型的基础上引入了一维卷积和多头自注意力机制,构建

了CATimeMixer模型,其架构如图1所示。一维卷积操

作通过对时间序列数据进行特征提取,能够有效地捕捉时

间序列中的局部特征和趋势信息。这种局部特征的提取

为模型提供了对短期动态变化的敏感性,使其能够更好地

理解数据中的即时模式和周期性变化。与此同时,多头自

注意力机制并行计算多个注意力头,从不同角度对时间序

列进行建模,从而丰富模型的特征表示能力。它能够能够

更有效地捕捉时间序列中的关键特征和长期依赖关系,进
而提升其对复杂时间序列数据的理解。二者结合使得模

型能够在捕捉局部细节的同时,兼顾全局信息,从而更全

面地理解时间序列的整体结构,为高精度的预测提供了坚

实基础,提升了模型在处理复杂时间序列数据时的性能和

可靠性。

图1 CATimeMixer模型

Fig.1 CATimeMixer
 

model

3 RobustTSF-MSDBO-CATimeMixe功率预测模

型建立

  基于上述提出的RobustTSF、MSDBO和CATimeMixer
方法,本文构建了一个端到端超短期风电功率多步预测组

合模型,通过整体模型直接学习输入和输出之间关系,无
需人为干预,模型预测流程如图2所示,具体实现步骤

如下:
步骤1)划分数据集,按照8∶1∶1的比例分为训练集,测

试集和验证集;

步骤2)利用RobustTSF方法对训练集进行异常值处

理,即通过计算输入数据与趋势滤波之间的误差来构建异

常分数,并根据异常分数筛选出符合条件的样本索引,去
除异常数据的影响;

步骤3)利 用 本 文 提 及 的 MSDBO 训 练 并 优 化

CATimeMixer模型,找到最佳的模型配置,验证集用于早

停机值,避免额外开销;
步骤4)将测试集输入到优化后的CATimeMixer模型

中进行超短期风电功率的多步预测,并通过实验评价指标

进行预测误差分析。
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图2 模型预测流程

Fig.2 Model
 

prediction
 

process

4 实  验

  为验证本文提出的超短期风电功率预测模型的有效

性,选取内蒙古自治区某96MW风电场2019年1月1日~
12月31日的数据作为实验数据集1。数据集由35

 

040个

数据点组成,时间分辨率为15
 

min,包括风机10
 

m高度处

风速、30
 

m高度处风速、50
 

m高度处风速、70
 

m高度处风

速、70
 

m高度处风向、风机轮毂高度处风速以及历史风电

功率。由于RobustTSF方法结合深度学习模型在实现端

到端异常时间序列预测任务中仍面临着同时处理协变量

和目标中的异常的挑战,所以本实验只能以历史风电功率

作为输入数据,将未来风电功率作为输出,分别构建了

1步、2步和4步的风电功率预测模型,对比实验仍以上述

多变量作为输入,风电功率作为输出。模型基于PyTorch
开发,在NVIDIA

 

GeForce
 

RTX
 

4060
 

GPU平台上完成训

练与测试验证。

4.1 评价指标

  为了全面评估模型的预测性能,本文采用了多种评价

指标,包括 MAE、RMSE、MSE以及R2,这些指标能够从

不同的角度反映模型的预测精度和稳定性。具体而言,

MAE和RMSE分别能够直观地反映预测值与真实值之间

的平均偏差和标准偏差,而 MSE则通过平方运算放大了

较大误差的影响,从而更敏感地捕捉异常预测值,就以上

3个指标而言,其数值越小,表明模型的拟合程度越好,预
测精度越高。R2 则反映了模型对数据变异的解释能力,其
范围为[0,1],越接近1,则表示模型的解释能力越强,拟合

效果越理想。以上4种评价指标在式(8)~(11)中定义。

MAE=
∑

n

i=1
yi-ŷi

n
(8)

RMSE=
∑

n

i=1
yi-ŷi  2

n
(9)

MSE=
∑

n

i=1
yi-ŷi  2

n
(10)

R2 =1-
∑

n

i=1
yi-ŷi  2

∑
n

i=1
yi-y-i  2

(11)

式中:n为样本数,ŷ 为预测值,y 为真实值,y- 为平均值。

4.2 优化算法性能测试及模型超参数调优

  为了测试所提出的算法改进的有效性,5种优化算法,
即灰 狼 优 化 算 法 (grey

 

wolf
 

optimization
 

algorithm,
 

GWO)[18],鲸鱼优化算法(whale
 

optimization
 

algorithm,
 

WOA)[19],北 方 苍 鹰 优 化 算 法 (northern
 

goshawk
 

optimization
 

algorithm,
 

NGO)[20],金 钱 豹 优 化 算 法

(golden
 

jackal
 

algorithm,
 

GJO)[21]和DBO被选择用于测

试函数的比较优化。为了保证测试的公平性,每个算法的

种群维度统一为30,最大迭代次数为500,并在4个测试函

数上独立测试30次,以获得适应度平均值收敛曲线。如

图3所示,其中F1~F2是单峰函数,F3~F4是多峰函数,
可以观察到 MSDBO在4幅图中的收敛速度上展现出了

明显的优势,其收敛曲线不仅更加平滑,而且在优化过程

中更不易陷入局部最优解。这一结果表明,改进后的算法

在处理复杂的优化问题时,不仅效率更高,而且具有更好

的全局搜索能力和稳定性。

CATimeMixer模型的预测能力与其关键超参数紧密

相关,包括模型维度、前馈神经网络维度、学习率以及多头

自注意力头数。模型维度决定了输入数据的特征向量大

小,影响模型能够捕捉的信息量和表达能力。前馈神经网

络维度则与模型的非线性变换能力相关。学习率是控制

模型训练过程中参数更新步长的关键因素。多头注意力

头数则影响模型捕捉序列中不同位置依赖的能力,帮助模

型从 不 同 的 角 度 学 习 数 据 特 征。因 此,本 研 究 采 用

MSDBO对CATimeMixer模型的以上超参数进行优化调

参,通过智能搜索最优的参数组合,能够有效提升模型的

预测精度和泛化能力。最终,当模型的维度为128、前馈神

经网络维度为1
 

024、学习率为0.0001和多头自注意力头

数为4时,模型达到了其最优的预测性能。

4.3 消融实验

  为了验证本文所提出的模型中各个模块的有效性,进
行了消融实验。逐级去除了本文所提模型中的模块,观察

MLP、TimeMixer、CATimeMixer、MSDBO-CATimeMixer
与之模型性能的变化,实验评价指标结果如表1所示。为

了更直观地展示模型的预测性能,拟合图选取测试集中的

1
 

000个点,如图4所示,可见每个模块均对模型的预测性
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图3 测试函数收敛曲线

Fig.3 Test
 

the
 

convergence
 

curve
 

of
 

the
 

function

表1 消融实验评价指标

Table
 

1 Evaluation
 

indicators
 

of
 

ablation
 

experiments
预测模型 MAE RMSE MSE R2

MLP 3.307 5.072 25.726 0.936
TimeMixer 2.107 3.568 12.730 0.968
CATimeMixer 1.857 3.249 10.559 0.973

MSDBO-CATimeMixer 1.761 3.101 9.617 0.976
本文所提模型 1.663 2.979 8.876 0.978

能具有重要贡献,缺少任一模块都会导致预测精度显著下

降。具体来说,本文所提模型相较于基准模型 MLP的

MAE、RMSE、MSE分别下降了49.71%、41.26%、65.50%,
同时R2 提高了4.49%,这一结果充分证明了本文所提出

模型结构的合理性和有效性,表明各模块在提升模型整体

性能中均发挥了不可替代的作用。
为了全面评估所提出的模型的鲁棒性和泛化能力,在

消融实验的基础上,进一步选取了中国南方某96MW 风

电场2019年1月1日~12月31日的数据作为实验数据

集2。通过在这一全新的数据集上进行验证,能够更客观

图4 消融实验结果拟合图

Fig.4 Fitting
 

graph
 

of
 

ablation
 

experiment
 

results

地评估模型的泛化能力,确保其在面对未知数据时仍能保
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持良好的预测性能和鲁棒性表现。从表2可以看出,尽管

两个数据集在地理位置、气候条件上存在部分差异,但所

提出的模型在两个数据集上的R2 差异仅为0.613%。这

一微小的差异表明,模型在不同数据集上的性能基本一

致,证明了其较强的鲁棒性和泛化能力,为模型在更广泛

的实际应用中提供了有力支持。

表2 不同数据集所提模型评价指标

Table
 

2 Model
 

evaluation
 

metrics
 

proposed
 

for
 

different
 

datasets

数据集 MAE RMSE MSE R2

数据集1 1.663 2.979 8.876 0.978
数据集2 3.294 5.337 28.486 0.972

4.4 多步预测对比实验

  为了进一步在数据集1中验证本文模型的优势,将本

文所提模型与其他当前广泛应用于超短期风电功率预测领

域的主流预测模型进行了多步预测对比实验,这些模型包

括BiLSTM[22]、TCN[23]、Nons-Transformer[24]以及逐步加入

分解算法和优化算法的CNN-LSTM[25](VMD-CNN-LSTM、

VMD-DBO-CNN-LSTM),实验评价指标结果如表3所示。
为了更直观地展示模型的预测性能,拟合图取测试集中的

1
 

000个点,如图5、6、7所示,可以看出随着预测步长的增

加,所有模型在处理复杂且波动较大的风电功率数据时性

能有所下降,但本文所提模型在1步、2步和4步中风电功

率预测中均表现出最高的预测精度且真实值与预测值拟合

效果更好。具体而言,在4步预测中,相较次优网络VMD-
DBO-CNN-LSTM 的 MAE、RMSE、MSE 分 别 降 低 了

36.64%、18.25%、33.16%,同时R2提升了1.14%;在2步

预测中,相较次优网络非平稳Transformer的 MAE、RMSE、

MSE分别降低了36.58%、26.67%、46.24%,同时R2 提升

了0.92%;在1步预测中,相较次优网络DBO-CNN-LSTM
的 MAE、RMSE、MSE 分 别 降 低 了 23.92%、19.10%、

34.71%,同时R2 提升了0.3%,这充分证明了本文模型在

超短期风电功率预测中的优越性。本文所提模型的优势主

要体现在以下几个方面:RobustTSF有效处理异常数据,为
预测模型提供了可靠的数据基础。MSDBO通过高效的超

参数优化,提升了模型的收敛速度和精度。CATimeMixer
从一种新的多尺度特征融合视角来处理不同尺度序列特征

的复杂变化,结合卷积和注意力机制,充分捕捉了时间序列

的局部特征和全局依赖。综上所述,RobustTSF-MSDBO-
CATimeMixer模型通过以上3种优势的结合,在超短期风

电功率预测中表现出较高的精度和稳定性,为解决实际应

用中的风电功率预测问题提供了一种潜在的有效方案。

表3 对比实验评价指标

Table
 

3 Evaluation
 

indicators
 

of
 

comparative
 

experiments

预测步长 评价指标 BiLSTM TCN
DBO-CNN-
LSTM

VMD-DBO-
CNN-LSTM

非平稳

Transformer
本文所提

模型

1步

MAE 1.426 1.583 1.176 2.076 1.103 0.895

RMSE 2.225 2.436 1.901 2.949 1.917 1.538

MSE 4.953 5.932 3.615 8.700 3.625 2.360

R2 0.988 0.985 0.991 0.974 0.990 0.994

2步

MAE 2.604 2.554 1.848 2.205 1.282 1.172

RMSE 3.908 3.902 2.812 2.937 2.238 2.062

MSE 15.269 15.229 7.907 8.627 5.009 4.251

R2 0.962 0.963 0.980 0.979 0.987 0.989

4步

MAE 2.951 3.152 2.914 2.625 2.194 1.663

RMSE 4.581 4.714 4.414 3.644 3.696 2.979

MSE 20.984 22.221 19.486 13.279 13.659 8.876

R2 0.948 0.945 0.952 0.967 0.966 0.978

·271·



 

高 鹭
 

等:基于多尺度特征融合的超短期风电功率预测 第1期

图5 1步预测结果拟合图

Fig.5 One-step
 

prediction
 

result
 

fitting
 

graph

图6 2步预测结果拟合图

Fig.6 Two-step
 

prediction
 

result
 

fitting
 

graph

图7 4步预测结果拟合图

Fig.7 Four-step
 

prediction
 

result
 

fitting
 

graph

5 结  论

  本文提出了一种基于异常值处理和多尺度特征融合

的端到端超短期风电功率多步预测组合模型RobustTSF-
MSDBO-CATimeMixer,模型创新性地结合数据处理、优
化算法和多尺度特征融合架构三大核心方法,实现了在复

杂风电功率时间序列数据中的准确预测。RobustTSF方

法的引入,不仅为模型在异常数据环境下的鲁棒性提供了

有力保障,还简化了数据处理流程,为风电功率预测奠定

了坚实的数据基础。同时,MSDBO凭借其高效的优化策

略,为模型超参数的优化提供了强大支持,进一步提升了

模型的性能。此外,TimeMixer模型中的一维卷积与多头

自注意力机制的结合,使得模型在处理复杂时间序列数据

时能够更好地捕捉局部与全局特征,显著提高了预测的稳

定性和准确性。在实际数据集上的应用验证了该模型的

高效性、鲁棒性和泛化能力,为电力系统的调度和运行提

供了有力的技术支持。
然而,尽管 RobustTSF-MSDBO-CATimeMixer模型

在当前研究中取得了显著进展,但仍存在一些有待进一步

完善的地方。当前模型主要关注目标变量中的异常值处

理,对于协变量中的异常问题尚未解决。在未来的研究

中,应进一步优化RobustTSF方法,以实现对协变量和目

标变量中异常问题的协同处理,从而提升模型在更复杂环

境下的适应性和预测精度。
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