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Bearing fault diagnosis method based on multi-head self-attention
and dynamic alignment

Li Jie Liu Tianyu
(School of Electrical Engineering, Shanghai Dianji University,Shanghai 201306, China)

Abstract: To address the issue of performance degradation in rolling bearing fault diagnosis under varying operating
conditions caused by distribution discrepancies between the source and target domains, this paper proposes a novel fault
diagnosis method that integrates a multi-head self-attention mechanism with dynamic joint distribution adaptation.
Firstly, a multi-head self-attention mechanism is incorporated into the feature extraction module to extract more
discriminative and domain-invariant features from raw vibration signals. Secondly, maximum mean discrepancy and
local maximum mean discrepancy are employed to align the marginal and conditional distributions, thereby reducing the
distribution difference between the source and target domains. Finally, a dynamic weighting factor is designed to
adaptively adjust the importance of marginal and conditional distribution alignment, enhancing the robustness and
generalization ability of cross-domain fault diagnosis. The experimental results demonstrate that the proposed method
achieved classification accuracies of 99.84% and 98.97% on two public datasets, significantly outperforming other
approaches. Moreover, it maintained strong stability and robustness under severe noise interference, providing an
effective solution for rolling bearing fault diagnosis.
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Fig.1 Feature extraction module based on multi-head self-attention
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PR TG R . BB 4 Rl e i, IE R Table 1 CWRU dataset and JNU dataset
ZINC) P Rl B (TF) | Ah el BsE COF) # IR 2l 14 g g i ‘ WE ) BER N
(BF). fil. LA —~ BRI A Fo hptisbnss g B BORSE oL e R
RARAFRE N B AR, STIRAE IR TR 2 R 3 PR, " o7 0 ozl
6 CWRU %4 4 |-, MHSA-DJDA 16 T H AL 5 1Y B |77 ) 0 021
TEHER Ry 99. 84 %6 AR T I A Ty vk . A T vk 1 F B CWRU c L 750 ) 0021 EH AR
W 2 4> ) 5 DDC (94. 86 %) . DCORAL ( 96. 85%) . D 1730 ; 0021 A P g e
DSAN(98. 85%) \DANN(92. 61%) Fl DDTLN(99.53%) ., = 500 — — A g bt
XU MHSA-DJDA B 550 B % A 7] 35 5 45, i i INU v 200 B B TR ol A b s
AT R B R D MM &M ER BT G L 000 B B
W ERG . bR R 25 7 T MHSA-DJDA (¥ 5 4 f 22
*2 ECWRUHEHEE LRREAENERE
Table 2 Accuracy of different methods on CWRU dataset
o BRI M RE/ %
DDC DCORAL DSAN DANN DDTLN MHSA-DJDA
A—>B 93.90+4. 19 98.26+1.63 98.95+1. 80 98.43+2. 26 99. 78+0. 26 99. 8240. 32
A—>C 94. 654 3. 09 94.9141. 15 96.32+2.78 92.4043. 77 98. 2840. 33 99. 7540. 26
A—D 96.0541. 72 95.9140. 82 96.133. 02 78.38+4. 26 99. 3440. 30 99. 6840. 26
B— A 86. 234-3. 39 97. 3045, 45 99.32+1.51 98. 61+1. 80 99.9340. 11 99. 8740. 30
B—C 95. 4244. 90 96. 154-1. 30 99.5340. 35 95. 3543. 03 99. 244-0. 64 99. 8840. 22
B—D 98.68+0. 75 95.48+4.18 99. 570. 44 87.98+4. 39 99.4340.18 99.8340. 10
C—>A 90. 82+6. 49 98.32+3. 31 99. 9340. 07 97.2243.01 99.5140. 35 99. 7840. 49
C—>B 96.7242.57 98. 0543. 90 99.72-+0. 55 97.1243. 04 99.9040. 18 99.9540. 11
C—>D 94.0143. 98 97.1844. 86 99. 81+0. 16 98. 3843. 35 99. 8140. 13 99. 8540. 29
D— A 96. 6743. 31 96. 2245. 21 97.9543. 72 91.0144. 55 99. 7940. 21 99. 8840. 26
D—>B 98. 8141. 00 97.0143. 00 99.5740. 57 76.7242. 59 99. 8940. 11 99. 8240. 41
D—>C 96. 35+3. 86 97.40+2. 02 99. 3840. 70 99. 68+0. 33 99.4240. 74 99.9340. 11
- {E 94. 86+3. 27 96.85+3. 07 98.85+1. 31 92.6143.03 99.5340. 29 99. 8440. 26
®3 GEIEAFHREELAAAENERE
Table 3 Accuracy of different methods on JNU dataset
o B MERE/ %6
DDC DCORAL DSAN DANN DDTLN MHSA-DJDA
E—>F 86. 7345 65 94. 384-4. 17 99. 7340. 30 86. 954-4. 05 95.731. 04 99. 880. 09
E—>G 98. 96+0. 83 93.30+4. 05 98. 56 2. 60 89.1544. 02 98.4440. 62 99. 2640. 54
F—>E 95.43+1.97 91.18+4.91 98.03+1. 98 86.20+3. 23 94.2242. 95 99. 8840. 14
F—~G 98.1842. 65 98.4141. 96 97.78+2. 41 96. 1641. 54 99. 1340. 33 99. 6040. 44
G—E 91.4543. 33 76. 7344. 60 78.6142. 59 77.0644. 60 93.4441. 42 96. 5841. 74
G—F 96. 78 +2. 02 86.70+3. 41 98.53+1. 44 96. 184+3. 39 98. 38+0. 68 98.65+0. 98
- S {E 94.5942. 74 90.12+3. 85 95.21+1. 86 88.623.47 96.56+1.17 98.97+0. 66
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% 76 R AT 55 [ PR — 3 R B
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DDC (94.59%) . DCORAL (90. 12%) . DSAN (95. 21%) .
DANN(88. 62%) #1 DDTLN (96.56%), #k — & jIF 52,
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Table 4 Experimental results of different models %

T RS  [n] % F1
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DCORAL 79. 25 79.08 78. 31
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Fig. 4 Confusion Matrix of task G > E
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Table 5 CWRU different fault size dataset

BT HAM T 2 B0M% . DSAN A 8 OG0 2% 43 A1 o A it HE
REAT FTER T . DDTLN J5 % SRR S & 1 30 % o0 A A 4614y
Ay AH R Tk = 20 25 B B L PG R R X B R RE A

] o B RS ‘
Bk TR . LS S T B (K2 ALk . H T ARBGE 1 7 3 . MHSA-
%0 ; 007 TERE DJDA EIIﬁ]ﬁiﬁﬁﬁﬁé?%%ﬁ?ﬂ%ﬁ%ﬁﬁ%E‘J%‘bﬁﬁlﬁ%@
WTRE 7, i B s 4 0 5 A P Rz AL RE
2 0.014 PAY Bl e 2 T
CWRU 51 i 3.5 HEhKIE
R2 2 0.021 5 %JTﬁ*ﬁj%\iﬂfzfijCﬁYZE@‘@ﬁﬁv#ﬁfﬁﬁ/l\ﬁﬁ%%
FE L BHLE TS F — E f1 R1 — RO #EAT I S0 5.
F6 ARMERTHILIHER
Table 6 Comparative experimental results for different fault size
e BERIPERE/ %6
DDC DCORAL DSAN DANN DDTLN MHSA-DJDA
RO — R1 77.887.77 80.67+2.16 78.58+5.18 51.8543.70 62.1040. 90 89.23+£1.42
RO — R2 66.36+3.27 81.45+2.76 94.15+10. 3 69.97+4. 35 97.72+1.40 99.5740. 60
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Table 7 Comparison of ablation experiment

model performance

o MHSA A F>E Rl1—>RO
T HEBHR/ 20 HEBHE/ %
JDA 94. 20 91.78
DJDA N 95. 08 93. 82
MHSA-JDA J 95. 65 93. 40
MHSA-DJDA N N/ 99. 88 95. 59
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Fig.5 Total losses for different models
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Table 8 Comparison of training performance of

different models

_— ¥/ FLOPs/ Ik i
(X10%)  (X10%) WHE/s WA /ms

DDC 3.41 164.29  125.88  121.97
DCORAL 3. 40 162.82  110.73  124.77
DSAN 3.97 525.07  475.85  148.39
DANN 0. 66 101.74  82.53  133.17
DDTLN 0.79 9.66  399.43  127.66
MHSA-DJDA  1.71 10.57  328.38  128.51

MF 8 hA] LLE i, MHSA-DJDA 7E5] A MHSA L
PRFHFRAE TR BE T 1 1B, A5 s il T AR B S B
5 FLOPs #i, 2 KT DSAN 255 Je M A0, Hi 1 B 1)
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