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摘 要:为解决滚动轴承在不同工况下故障诊断过程中源域与目标域之间分布差异导致的诊断性能下降问题,本文

提出了一种融合多头自注意力机制和动态联合分布自适应的轴承故障诊断方法。首先,在特征提取模块中引入多头

自注意力机制,从原始振动信号中提取更具判别性和域不变特征。其次,分别采用最大均值差异与局部最大均值差异

对齐边缘分布及条件分布,从而缩小源域与目标域之间的分布差异。最后,设计一种新的动态权重因子自适应地调整

边缘分布与条件分布的权重,提升跨域故障诊断的鲁棒性与泛化能力。实验结果表明,所提出的方法在两种公开数据

集上分类准确率分别达到了99.84%和98.97%,显著优于其他方法。同时在强噪声干扰下仍表现出良好的稳定性与

鲁棒性,为滚动轴承故障诊断提供了一种有效的解决方案。
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Abstract:To
 

address
 

the
 

issue
 

of
 

performance
 

degradation
 

in
 

rolling
 

bearing
 

fault
 

diagnosis
 

under
 

varying
 

operating
 

conditions
 

caused
 

by
 

distribution
 

discrepancies
 

between
 

the
 

source
 

and
 

target
 

domains,
 

this
 

paper
 

proposes
 

a
 

novel
 

fault
 

diagnosis
 

method
 

that
 

integrates
 

a
 

multi-head
 

self-attention
 

mechanism
 

with
 

dynamic
 

joint
 

distribution
 

adaptation.
 

Firstly,
 

a
 

multi-head
 

self-attention
 

mechanism
 

is
 

incorporated
 

into
 

the
 

feature
 

extraction
 

module
 

to
 

extract
 

more
 

discriminative
 

and
 

domain-invariant
 

features
 

from
 

raw
 

vibration
 

signals.
 

Secondly,
 

maximum
 

mean
 

discrepancy
 

and
 

local
 

maximum
 

mean
 

discrepancy
 

are
 

employed
 

to
 

align
 

the
 

marginal
 

and
 

conditional
 

distributions,
 

thereby
 

reducing
 

the
 

distribution
 

difference
 

between
 

the
 

source
 

and
 

target
 

domains.
 

Finally,
 

a
 

dynamic
 

weighting
 

factor
 

is
 

designed
 

to
 

adaptively
 

adjust
 

the
 

importance
 

of
 

marginal
 

and
 

conditional
 

distribution
 

alignment,
 

enhancing
 

the
 

robustness
 

and
 

generalization
 

ability
 

of
 

cross-domain
 

fault
 

diagnosis.
 

The
 

experimental
 

results
 

demonstrate
 

that
 

the
 

proposed
 

method
 

achieved
 

classification
 

accuracies
 

of
 

99.84%
 

and
 

98.97%
 

on
 

two
 

public
 

datasets,
 

significantly
 

outperforming
 

other
 

approaches.
 

Moreover,
 

it
 

maintained
 

strong
 

stability
 

and
 

robustness
 

under
 

severe
 

noise
 

interference,
 

providing
 

an
 

effective
 

solution
 

for
 

rolling
 

bearing
 

fault
 

diagnosis.
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0 引  言

  旋转机械设备广泛用于工业生产、交通运输、电力

等领域,其运行状态直接影响机械的性能与安全[1]。然

而,这些设备大多处于复杂且恶劣的运行环境中,其故

障极易引发设备损坏乃至安全事故,给生产系统带来巨

大的经济损失[2]。因此,如何实现对轴承健康状态的准

确识别,已成为保障设备稳定运行和提升生产效率的核

心问题[3]。
振动信号由于能够连续监测轴承的工作状态,已被广

泛应用于轴承健康状态的诊断[4]。传统诊断方法依赖人工

特征提取和先验知识,存在泛化性差、特征不稳定等问题。
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因此,深度学习因其强大的特征提取能力和端到端的诊断

优势,逐渐成为轴承故障诊断领域的研究热点[5]。例如,

Zhang等[6]应用卷积神经网络构建了多尺度残差注意力网

络,在有限的标记数据下提高了故障诊断的性能。Xue
等[7]通过多域特征融合和注意力机制进行电机轴承故障诊

断,有效提高了模型的诊断性能。
尽管深度学习在故障诊断中表现优异,但其通常假设

训练数据与测试数据来自相同分布,这一假设在实际中难

以成立[8]。由于不同设备、负载和工况下的信号存在明显

差异,导致模型在跨域场景中性能下降[9]。为了解决这一

问题,迁移学习[10]为机械设备故障诊断提供了一种可行的

解决方案。其通过在源域中学习已标注的知识,并迁移至

目标域未标注样本,有效提升了模型的泛化能力。
无监督域适应是迁移学习的一个重要分支,旨在通过

利用源域上带标签的数据和目标域上未带标签的数据,解
决源域和目标域之间分布差异的问题[11-12]。例如,Sun
等[13]提出了深度相关对齐(deep

 

coral,
 

DCORAL)方法,通
过线性变换对源域和目标域分布的二阶统计量进行对齐,
有效缓解了域偏移问题。Cao等[14]提出了一种基于无偏估

计的 柯 西 核 诱 导 的 最 大 均 值 差 异 (maximum
 

mean
 

discrepancy,
 

MMD)算法,从而实现全局特征对齐。然而,
上述方法忽略了源域与目标域之间条件分布差异,从而限

制了迁移性能。为进一步提升迁移效果,Wang等[15]提出

了一种深度子域迁移学习网络,利用局部最大均值差异

(local
 

maximum
 

mean
 

discrepancy,
 

LMMD)来协调源域和

目标域的子域分布,从而实现更有效的特征迁移。
尽管上述方法在一定程度上解决了领域自适应问题,

但大多数方法只关注边缘分布对齐或者条件分布对齐,未
能同时关注边缘分布和条件分布之间的差异,导致其在复

杂工况下的性能受到限制。为了解决这一问题,潘晓博

等[16]采用改进联合分布适应方法对源域和目标域特征集

进行分布适应处理,降低域间分布差异。Qian等[17]提出一

种深度 判 别 迁 移 学 习 网 络(deep
 

discriminative
 

transfer
 

learning
 

network,
 

DDTLN),结合改进的联合分布自适应

来增强领域混淆。然而,现有研究大多假设边缘分布和条

件分布的同等重要,或手动调整其权重,这种做法在某些情

况下可能不够灵活,从而降低了域适应性能。
针对上述问题,本文提出了一种融合多头自注意力机

制 和 动 态 联 合 分 布 自 适 应 (multi-head
 

self-attention
 

mechanism
 

and
 

dynamic
 

joint
 

distribution
 

adaptation,

MHSA-DJDA)的轴承故障诊断方法。首先,在特征提取模

块中引入多头自注意力(multi-head
 

self-attention,MHSA)
机制,以便从原始振动信号中提取出不同故障模式下的代

表性特征。其次,分别采用MMD与LMMD对边缘分布与

条件分布进行特征对齐,减少源域与目标域之间的差异。
最后,设计一种动态权重因子,根据实际工况自适应地调整

边缘分布和条件分布的权重,从而进一步提升特征对齐的

效果。实验结果表明,该方法不仅获得了较高的准确率,还
增强了在噪声环境下诊断的性能。为工业场景下的轴承故

障诊断提供了一种有效的解决方案。

1 理论背景

1.1 无监督领域自适应

  在无监督领域自适应中,假设给定一个源域数据集

Ds = xs
i,ys

i  
ns
i=1,其中xs

i 是源域的第i个样本,ys
i 为其对

应的标签,且ns 为源域样本的总数。源域样本服从边缘概

率分布P xs  和条件概率分布P ys|xs  。 同时,目标

域数据集定义为Dt = xt
j  

nt
j=1,其中xt

j 是目标域的第j
个样本,nt 是目标域样本的总数。目标域样本服从边缘概

率分布P xt  和条件概率分布P yt|xt  。 然而,源域

和目 标 域 之 间 存 在 差 异,即:P xs  ≠ P xt  和

P ys|xs  ≠P yt|xt  。

1.2 最大均值差异和局部最大均值差异

  MMD作为一种非参数度量方法,已广泛应用于多个

迁移学习算法中,用于衡量源域和目标域特征分布之间的

差异。MMD的定义如下:

MMD(Xs,Xt)= ‖
1
ns
∑
ns

i=1
ϕ xs

i  -
1
nt
∑
nt

j=1
ϕ xt

j  ‖2
R

(1)
其中,ns 和nt 分别表示源域和目标域的样本数量;

ϕ(·)是表示从原始空间到再生核希尔伯特空间的映射,

‖·‖2R表示该空间的范数。为了简化计算,通常使用核函

数代替特征映射函数,MMD的公式可以进一步简化为:

MMD2(Xs,Xt)=
1
n2

s
∑
ns

i=1
∑
ns

j=1
kxs

i,xs
j  +

1
n2

t
∑
nt

i=1
∑
nt

j=1
kxt

i,xt
j  -

2
nsnt
∑
ns

i=1
∑
nt

j=1
kxs

i,xt
j  (2)

其中,kx·
i,x·

j  是核函数,通常由多个高斯核函数的

线性组合构成。
为了强 调 同 一 类 别 内 源 域 和 目 标 域 之 间 的 关 系,

LMMD[18]被提出,用于度量两个子域之间的差异。LMMD
的定义如下:

 

d︵R(p,q)≜Ec‖Ep
(c) ϕ xs    -Eq

(c) ϕ xt    ‖2
R

(3)
其中,xs 和xt 分别表示源域Ds 和目标域Dt 中的样

本,p(c)和q(c)分别表示源域和目标域中属于类别c的概

率分布。每个样本的权重根据类计算。因此,LMMD可以

进一步化简为:
 

d︵R(p,q)=
1
C∑

C

c=1
‖∑

xsi∈Ds

ωsc
iϕ xs

i  -∑
xtj∈Dt

ωtc
jϕ xt

j  ‖2
R

(4)
其中,ωsc

i 和ωtc
j 表示属于类别c的源域和目标域样本
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的权重;∑xi∈Dω
c
iϕ x  是类别c的加权和。权重的计算

方法参考文献[18]。
目标域是无标签的,因此直接计算权重是不可行的。

因此,利用深度学习模型预测的伪标签,计算权重。改写后

的LMMD方程为:

d︵l(p,q)=
1
C∑

C

c=1
∑
ns

i=1
∑
ns

j=1
ωsc

iωsc
jkzsl

i,zsl
j   +

∑
nt

i=1
∑
nt

j=1
ωtc

iωtc
jkztl

i,ztl
j  -2∑

ns

i=1
∑
nt

j=1
ωsc

iωtc
jkzsl

i,ztl
j  (5)

其中,zl 为第l层的激活。

2 基于多头自注意力和动态联合分布自适应的轴

承故障诊断方法

2.1 基于多头自注意力机制的特征提取模块

  自注意力机制能够有效捕捉时序数据中的长期依赖关

系,进而增强特征表达。其数学表达式如下:

Q =F*WQ,K =F*WK,V =F*WV (6)

Attention Q,K,V  =softmax
QKT

dk  V (7)

其中,Q、K 和V 分别表示查询矩阵、键矩阵和值矩阵。

F ∈ ℝ
L×dk 表示输入的振动数据经过卷积后的输出矩阵,

其中L 是输入序列的长度,dk 表示查询、键和值的特征维

度。WQ,WK,WV ∈ ℝ
dm×dk 是对应的权重矩阵,它们随着模

型的训练不断更新。dm 表示输入的特征维度。

MHSA是由多个并行执行的自注意力机制组成,每个

头都有独立的权重矩阵,从而能够捕捉数据中的不同特征

子空间的依赖关系。MHSA的数学表达式如下:

Headi =Attention(QWQ
i,KWK

i,VWV
i),i=1,2,…,h

(8)

MHSA(Q,K,V)=concat(head1,head2,…,headh)Wo

(9)

其中,WQ
i,WK

i,WV
i ∈ ℝ

dm×dk 分别表示第i个头的查

询、键和值的权重矩阵,h 表示头的数量,WO ∈ ℝ
dm×dm 是

一个可训练的权重矩阵。特征提取网络如图1所示。在

MHSA模块中,输入特征维度设定为
 

512。该维度足以提

供丰富的信息表征能力,使模型能够捕捉到信号中的复杂

模式和潜在关联。为了捕捉多样化特征的同时平衡计算复

杂度,本文采用了
 

8
 

个注意力头。在完成多头自注意力机

制的计算后,输出特征维度与输入维度保持一致,模块的输

出直接作为后续卷积层的输入。基于对任务特性和模型结

构的深入分析,在 MHSA模块之后,本文选择不进行残差

连接和层归一化。

2.2 改进的动态联合分布自适应

  联合分布自适应的目标是减少源域和目标域之间的边

缘分布和条件分布的差异。其目标函数可以定义为:

图1 基于多头自注意力的特征提取模块

Fig.1 Feature
 

extraction
 

module
 

based
 

on
 

multi-head
 

self-attention

LJDA =‖EP xs  T xs    -EP xt  T xt    ‖2+

∑
C

c=1
‖EP ys=c|xs  ys =c|T xs    -

EP yt=c|xt  yt =c|T xt    ‖2 (10)
其中,T(·)为图1中的特征提取器,由于目标域没有标

签,无法直接计算条件概率分布P yt|xt  。因此,采用类条

件概率分布P xt|yt  近似条件概率分布P yt|xt  。 根

据贝叶斯定理,可以将其转化为类条件概率的形式:

P y =c|x  =
P(y =c)P x|y =c  

P x  
(11)

其中,类条件概率分布P x|y =c  可以根据伪标

签计算,类先验分布P(y =c)可按以下方式估算:

P(ys =c)=
nc

s

∑
C

i=1
ni

s

,P(yt =c)=
nc

t

∑
C

j=1
nj

t

(12)

其中,c表示类别数,nc
s 和nc

t 分别表示源域和目标域

中第c类的数量,同时∑
C

c=1
nc

s =ns 和∑
C

c=1
nc

t =nt。

因此,条件分布可以进一步表示为:

LCDA =∑
C

c=1
‖EP xs|ys=c  [T(xs)|ys =c]P(ys =c)-

EP xt|yt=c  T xt  |yt =c  P(yt =c)‖2 (13)
以往大多数联合分布自适应方法假设边缘分布和条件

分布具有同等重要性。然而,当源域和目标域相似度较高

时,条件分布对齐更为重要;而当两域差异较大时,边缘分

布对齐变得更加关键。因此,提出了一个动态平衡因子μ,
动态调整边缘分布和条件分布的权重。最终的动态联合分

布机制可以定义为:

LDJDA =μ‖EP xs  T xs    -EP xt  T xt    ‖2+

(1-μ)∑
C

c=1
‖EP xs|ys=c  T xs  |ys =c  P(ys =c)-

EP xt|yt=c  T xt  |yt =c  P(yt =c)‖2 (14)
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其中,μ∈ [0,1]。 当μ→0时,表示源域和目标域数

据集具有较高的相似性,条件分布对齐更为重要;当μ→1
时,边缘分布对齐变得更加关键。

边缘分布对齐使用 MMD计算,同时为了更好的对齐

同一类别在不同域中的子域,并捕捉更多细粒度信息,条件

分布对齐使用LMMD来评估分布差异。最终的动态联合

分布损失函数可以改写为:

LDJDA =μMMD T xs  ,T xt    +

(1-μ)∑
C

c=1
LMMD T xs  |ys =c  P(ys =c) ,

T xt  |yt =c  P(yt =c) (15)
由于目标域是无标签的,交叉验证方法将存在一定的

局限性。因此,本文使用边缘分布损失和条件分布损失来

计算动态平衡因子μ,计算方法为:

μ=
lossMDA

lossMDA +lossCDA
(16)

其中,lossMDA 是边缘分布损失,lossCDA 是条件分布

损失。

2.3 总损失函数

  为了更好地学习源域上的知识,使用交叉熵损失函数。
分类损失可以定义为:

Lc =LS +βLT (17)
其中,LS 和LT 分别表示源域和目标域分类损失;参数

β为权衡参数。
根据改进的动态联合分布自适应,整个网络的损失函

数可以定义为:

Lall =Lc+λLDJDA (18)
其中,LDJDA 为动态联合分布损失,λ是权衡因子。在

整个训练过程中,采用Adam优化算法进行优化。为了增

强模型特征的可迁移性,λ的权衡因子设计为:

λ=
2

1+exp
-10epoch
max_epoch  

-1 (19)

在训练初期,λ的值为0,有助于更好地学习基础的故

障特征知识。随着训练次数的增加,λ的值单调增加,从而

逐渐增强动态联合分布损失,更好地对齐源域和目标域的

特征。
如图2所示,网络由特征提取模块、基于 MMD 和

LMMD的动态联合分布损失模块和分类模块构成。

3 实验和结果

3.1 实验数据

  本文使用两个不同的滚动轴承数据集进行诊断实验。
以下是数据集的详细信息。

1)凯斯西储大学(Case
 

Western
 

Reserve
 

University,

CWRU)数据集[19]:数据采集系统由三大部分组成:电机、
扭矩传感器和测功机。本文使用的数据来源于电机驱动端

的振动信号,采样频率为48
 

kHz。数据集包含4种不同工

图2 MHSA-DJDA框架

Fig.2 MHSA-DJDA
 

framework

况下的原始振动信号,分别为0
 

HP、1
 

HP、2
 

HP和3
 

HP。
在每种工况下,数据包括4种状态:正常状态、内圈故障、外
圈故障和滚动体故障。每种故障类型对应3个不同的故障

程度,分别为0.007
 

inch、0.014
 

inch和0.021
 

inch。

2)江南大学数据集[20]:该数据由江南大学在Spectra
 

Quest转子实验平台上采集的,包含3种故障类型:内圈故

障,外圈故障滚动体故障。数据集包含3种不同转速振动

信号,转 速 分 别 为600、800和1
 

000
 

rpm,采 样 频 率 为

50
 

kHz。

3.2 实验细节

  为了评估 MHSA-DJDA的性能,将本文方法与几种知

名的领域自适应方法进行了比较,包括深度域混淆(deep
 

domain
 

confusion,
 

DDC)[21],DCORAL[13],深度子域自适

应网络(deep
 

subdomain
 

adaptation
 

network,
 

DSAN)[18],
域对 抗 神 经 网 络 (domain

 

adversarial
 

neural
 

network,
 

DANN)[22]和DDTLN[17]。
为验证所提出的 MHSA-DJDA方法,每个迁移任务均

重复执行5次。诊断性能通过准确率、精确率、召回率和
 

F1
 

分数等指标进行综合评估。
在每 个 故 障 诊 断 任 务 中,每 个 类 别 的 样 本 数 均 为

1
 

000,实验中将每类样本按7∶3的比例随机划分为训练集

和测试集。由于实际采集的原始数据量有限,本文采用滑

动采样技术进行数据增强,窗口长度设为3
 

072,步长为

256。为提升模型的训练效率和性能对输入数据进行标准

化处理。
考虑到伪标签和真实标签可能存在差异,将参数β设

置为0.1,参数μ 根据计算的损失动态调整。学习率设置

为0.001,迭代次数为100,批次大小设置为128。

3.3 不同工况下的迁移实验

  为了评估 MHSA-DJDA在不同工况下诊断轴承故障

的性能,本文在CWRU数据集上分别建立了数据集A、B、

C和D,用于迁移学习实验。在江南大学轴承数据集上根
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据不同的工况建立了数据集E、F和G,表1给出了两种数

据集的详细信息。每个数据集包含4种故障类型:正常状

态(NC)、内圈故障(IF)、外圈故障(OF)和滚动体故障

(BF)。例如,以A→B为例,A表示为带标签的源域,B则

为未带标签的目标域。实验结果表2和表3所示。
在CWRU数据集上,MHSA-DJDA在所有任务中的

平均准确率为99.84%,优于其他方法。其他方法的平均

准确 率 分 别 为 DDC(94.86%)、DCORAL(96.85%)、

DSAN(98.85%)、DANN(92.61%)和DDTLN(99.53%)。
这表明 MHSA-DJDA能够有效地应对不同跨域任务,通过

动态平衡不同数据集的边缘分布和条件分布差异,提升了

诊断准确性。在标准偏差方面,MHSA-DJDA的标准偏差

  

表1 CWRU数据集和江南大学数据集

Table
 

1 CWRU
 

dataset
 

and
 

JNU
 

dataset

数据集 工况
速度/

(r·min-1)
负载/

HP
故障尺寸/

inch
故障类型

CWRU

JNU

A 1
 

797
 

0 0.021
B 1

 

772
 

1 0.021
C 1

 

750
 

2 0.021
D 1

 

730
 

3 0.021
E 600 - -
F 800 - -
G 1

 

000 - -

正常状态

内圈故障

外圈故障

滚动体故障

表2 在CWRU数据集上不同方法的准确率

Table
 

2 Accuracy
 

of
 

different
 

methods
 

on
 

CWRU
 

dataset

任务
模型性能/%

DDC DCORAL DSAN DANN DDTLN MHSA-DJDA
A→B 93.90±4.19 98.26±1.63 98.95±1.80 98.43±2.26 99.78±0.26 99.82±0.32
A→C 94.65±3.09 94.91±1.15 96.32±2.78 92.40±3.77 98.28±0.33 99.75±0.26
A→D 96.05±1.72 95.91±0.82 96.13±3.02 78.38±4.26 99.34±0.30 99.68±0.26
B→A 86.23±3.39 97.30±5.45 99.32±1.51 98.61±1.80 99.93±0.11 99.87±0.30
B→C 95.42±4.90 96.15±1.30 99.53±0.35 95.35±3.03 99.24±0.64 99.88±0.22
B→D 98.68±0.75 95.48±4.18 99.57±0.44 87.98±4.39 99.43±0.18 99.83±0.10
C→A 90.82±6.49 98.32±3.31 99.93±0.07 97.22±3.01 99.51±0.35 99.78±0.49
C→B 96.72±2.57 98.05±3.90 99.72±0.55 97.12±3.04 99.90±0.18 99.95±0.11
C→D 94.01±3.98 97.18±4.86 99.81±0.16 98.38±3.35 99.81±0.13 99.85±0.29
D→A 96.67±3.31 96.22±5.21 97.95±3.72 91.01±4.55 99.79±0.21 99.88±0.26
D→B 98.81±1.00 97.01±3.00 99.57±0.57 76.72±2.59 99.89±0.11 99.82±0.41
D→C 96.35±3.86 97.40±2.02 99.38±0.70 99.68±0.33 99.42±0.74 99.93±0.11
平均值 94.86±3.27 96.85±3.07 98.85±1.31 92.61±3.03 99.53±0.29 99.84±0.26

表3 在江南大学数据集上不同方法的准确率

Table
 

3 Accuracy
 

of
 

different
 

methods
 

on
 

JNU
 

dataset

任务
模型性能/%

DDC DCORAL DSAN DANN DDTLN MHSA-DJDA
E→F 86.73±5.65 94.38±4.17 99.73±0.30 86.95±4.05 95.73±1.04 99.88±0.09
E→G 98.96±0.83 93.30±4.05 98.56±2.60 89.15±4.02 98.44±0.62 99.26±0.54
F→E 95.43±1.97 91.18±4.91 98.03±1.98 86.20±3.23 94.22±2.95 99.88±0.14
F→G 98.18±2.65 98.41±1.96 97.78±2.41 96.16±1.54 99.13±0.33 99.60±0.44
G→E 91.45±3.33 76.73±4.60 78.61±2.59 77.06±4.60 93.44±1.42 96.58±1.74
G→F 96.78±2.02 86.70±3.41 98.53±1.44 96.18±3.39 98.38±0.68 98.65±0.98
平均值 94.59±2.74 90.12±3.85 95.21±1.86 88.62±3.47 96.56±1.17 98.97±0.66

为0.26%,低 于 其 他 方 法,如 DDC(3.27%)、DCORAL
(3.07%)、DSAN(1.31%)、DANN(3.03%)和 DDTLN
(0.29%)。低标准偏差表明该方法具有更好的稳定性,能
够在不同任务间保持一致的表现。

在江南大学数据集上,MHSA-DJDA在所有任务中的

平均准确率为98.97%。其他方法的平均准确率分别为

DDC(94.59%)、DCORAL(90.12%)、DSAN(95.21%)、

DANN(88.62%)和 DDTLN(96.56%)。进 一 步 证 实,
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MHSA-DJDA在不同的迁移任务中提供了稳定且高效的

故障诊断。
在稳定性方面,MHSA-DJDA记录的平均标准偏差为

0.66%,是所有方法中最低的,这表明提出的模型不仅实

现了高精度,而且在一系列诊断任务中保持了一致的

性能。
对比其他方法,本文提出的MHSA-DJDA方法在精确

率、召回率和F1分数指标上均表现出更优越的性能,实验

结果如表4所示。精确率为98.46%,召回率为98.42%,

F1分数为98.40%,在所有对比方法中均为最高。这进一

步验证了该方法在保持高准确率的同时,能够稳定识别各

类样本,具备更强的鲁棒性与泛化能力。

表4 不同模型的实验结果

Table
 

4 Experimental
 

results
 

of
 

different
 

models%
模型 精确率 召回率 F1
DDC 95.25 93.99 94.11

DCORAL 79.25 79.08 78.31
DSAN 85.37 84.67 84.46
DANN 84.28 83.07 82.27
DDTLN 95.75 95.566 95.51

MHSA-DJDA 98.46 98.42 98.40

  为了进一步说明 MHSA-DJDA方法在跨领域任务中

对齐同一类样本的能力,对G→E进行特征可视化。利用

t分 布 随 机 邻 域 嵌 入(t-distribution
 

stochastic
 

neighbor
 

embedding,
 

t-SNE)对训练数据特征进行可视化。结果如

图3所示,每种颜色代表一个故障类别。
从图3中可以看出,MHSA-DJDA方法在不同迁移任

务中表现出最小的错误聚类数,这表明本文的方法能够更

清晰地将目标域中的样本进行区分。相比之下,其他方法

均有不少的错误分类。

DSAN主要关注源域和目标域的子领域对齐,忽略了

边缘分布对齐。DDC和DCORAL仅关注源域和目标域的

边缘分布和二阶统计特性,因此它们的对齐效果较差。

DDTLN通过同时对齐边缘分布和条件分布来提升模型性

  

图3 G→E任务t-SNE可视化

Fig.3 t-SNE
 

visualization
 

of
 

task
 

G→E

能,尽管任务中也表现出了较好的性能。但在某些类别的

边界处仍存在混叠现象,导致对齐效果不理想。DANN由

于采用了对抗训练机制来混淆源域和目标域,导致其对齐

效果在所有方法中最差。
进一步,通过混淆矩阵分析分类结果,结果如图4所

示。可以清楚地看出,MHSA-DJDA 方法的表现尤为突

出,能够正确地分类大部分故障样本,而其他方法在分类

任务中表现出不同程度的误分类,且性能波动较大。

3.4 不同故障尺寸的迁移实验

  为了进一步验证所提出方法的鲁棒性和泛化性,在
CWRU数据集中选择了不同故障尺寸的数据进行实验,分
别命名为R0、R1和R2。数据集的详细信息如表5所示,
实验对比结果如表6所示。

从结果可以看出,MHSA-DJDA方法仍然取得了最高

的平均准确率,同时标准偏差也达到了最低值。相比之

下,基于对抗学习的方法DANN在实验中表现出最低的

平均准确率,说明其在不同故障直径下泛化性较差。DDC
和DCORAL虽然对齐源域和目标域的边缘分布来减小领

域间的差异,但由于未能充分考虑不同故障类型的特征差

异,在执行不同严重程度的轴承故障诊断时,其准确性相
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图4 G→E任务混淆矩阵

Fig.4 Confusion
 

Matrix
 

of
 

task
 

G→E

表5 CWRU不同故障尺寸数据集

Table
 

5 CWRU
 

different
 

fault
 

size
 

dataset

数据集 工况
负载/

HP
故障尺寸/

inch
故障类型

CWRU

R0 2 0.007
R1 2 0.014

R2 2 0.021

正常状态

内圈故障

外圈故障

滚动体故障

较于其他方法较低。DSAN未能关注边缘分布,因此其性

能有所限制。DDTLN方法虽然结合了边缘分布和条件分

布,但由于缺乏动态平衡机制,其准确率相对较低,未能有

效地提升模型的泛化性。相比于其他域适应方法,MHSA-
DJDA在不同故障直径下依然能够获得较好的跨域故障诊

断能力,展现其出色的鲁棒性和泛化性能。

3.5 消融实验

  为了进一步验证本文方法的性能,并评估各个模块的

重要性,随机选取任务F→E和R1→R0进行消融实验。

  
表6 不同故障尺寸的对比实验结果

Table
 

6 Comparative
 

experimental
 

results
 

for
 

different
 

fault
 

size

任务
模型性能/%

DDC DCORAL DSAN DANN DDTLN MHSA-DJDA
R0→R1 77.88±7.77 80.67±2.16 78.58±5.18 51.85±3.70 62.10±0.90 89.23±1.42
R0→R2 66.36±3.27 81.45±2.76 94.15±10.3 69.97±4.35 97.72±1.40 99.57±0.60
R1→R0 94.25±8.49 77.22±7.17 83.07±8.27 70.65±9.39 62.38±3.65 95.59±1.43
R1→R2 50.57±0.60 91.83±2.42 94.82±2.48 63.17±8.66 99.40±0.47 98.80±0.80
R2→R0 71.17±5.99 84.05±8.07 97.08±6.20 71.06±5.70 98.57±1.14 99.73±0.55
R2→R1 81.77±5.87 67.58±4.75 92.47±5.78 55.85±5.92 94.65±2.62 99.07±1.13
平均值 73.67±5.33 80.47±4.56 90.03±6.37 63.76±6.29 85.80±1.70 96.99±0.99

首先为了验证 MHSA在特征提取中的有效性,设计了实

验DJDA,仅保留了动态联合分布自适应模块。接着,为了

验证动态权重因子在平衡边缘分布和条件分布中的作用,
设计了消融实验 MHSA-JDA。实验组合和结果如表7
所示。

从实验结果可以观察到,本文所提出的方法在两个任

务上分别达到了99.88%和95.59%的准确率,显著高于其

他模型。这一结果进一步证明了本文方法可以实现有效

的轴承故障诊断。
以任务F→E为例,各消融实验模型在训练过程中的

总损失变化如图5所示。可以发现 MHSA-DJDA的总损

失下降速度显著快于其他模型,进一步验证了其在域适应

  表7 消融实验模型性能对比

Table
 

7 Comparison
 

of
 

ablation
 

experiment
 

model
 

performance

模型 MHSA
动态

因子μ

F→E
准确率/%

R1→R0
准确率/%

JDA 94.20 91.78
DJDA √ 95.08 93.82

MHSA-JDA √ 95.65 93.40
MHSA-DJDA √ √ 99.88 95.59

任务中的优越性能。
由于滚动轴承时长运行在不同强度噪声的环境中,外
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图5 不同模型的总损失

Fig.5 Total
 

losses
 

for
 

different
 

models

部噪声会影响模型的诊断效果。由于实验数据集不含噪

声,因此,为了评估模型在噪声干扰下的稳定性和实用性,
本文在目标域信号中人工添加不同信噪比(signal-to-noise

 

ratio,
 

SNR)的高斯白噪声,以模拟真实工业环境中的噪声

扰动。信噪比计算公式为:

SNRdB =10lg
Psignal

Pnoise  (20)

其中,Psignal表示信号功率,Pnoise 是噪声功率。信噪比

的范围从-4
 

dB~10
 

dB,实验结果如图6所示。随着信噪

比的不断增大,信号受到噪声的干扰越小,MHSA-DJDA
方法的诊断准确率显著提升。即便在信噪比较低(<0

 

dB)
时,依然取得了较高的准确率,展现了极强的抗噪能力。
相比之下,DDTLN模型在低信噪比下表现不佳,但其准确

率随信噪比的上升提升显著,表明其对环境噪声敏感,鲁
棒性较差。

图6 不同信噪比信号的实验结果

Fig.6 Experimental
 

results
 

of
 

signals
 

with
 

different
 

SNRs

3.6 诊断训练时间对比分析

  为全面评估各模型的计算复杂度,选取任务F→E,将

DDC、DCORAL、DSAN、DANN、DDTLN以及本文提出的

MHSA-DJDA模型,在同一GPU环境下进行训练与推理,
并从参数量、FLOPs、训练时间和推理时间4个方面进行

了对比,结果如表8所示。

表8 不同模型的训练性能对比

Table
 

8 Comparison
 

of
 

training
 

performance
 

of
 

different
 

models

模型
参数/
(×106)

FLOPs/
(×106)

训练

时间/s
推理

时间/ms
DDC 3.41 164.29 125.88 121.97

DCORAL 3.40 162.82 110.73 124.77
DSAN 3.97 525.07 475.85 148.39
DANN 0.66 101.74 82.53 133.17
DDTLN 0.79 9.66 399.43 127.66

MHSA-DJDA 1.71 10.57 328.38 128.51

  从表8中可以看出,MHSA-DJDA在引入 MHSA以

提升特征表达能力的同时,仍有效控制了模型的参数规模

与FLOPs数量,显著低于DSAN等复杂模型。推理时间

方面,MHSA-DJDA保持了与其他方法相近的响应速度

(128.51
 

ms),仅略高于参数更少的DANN(133.17
 

ms)与
DDTLN(127.66

 

ms)。虽然其训练时间(328.38
 

s)略高于

部分轻量模型,但在保持较低计算开销的同时获得了更强

的模型性能和更高的准确率,充分验证了模型的实用性与

高效性。

4 结  论

  本文提出了一种基于多头自注意力和动态联合分布

自适应的轴承故障诊断方法。与传统的域适应方法相比,
本文方法在跨领域故障诊断中展现出更强的鲁棒性和泛

化性。首先,本文设计了一种基于多头自注意力机制的特

征提取模块,能够有效捕捉复杂振动信号中的动态特征,
显著增强了模型对不同故障模式的诊断能力。该模块通

过并行处理多个特征子空间,提升了特征提取的效率和准

确性。其次,本文通过 MMD和LMMD分别对齐源域和

目标域的边缘分布与条件分布,并设计了一种新的动态权

重因子,能够根据具体工况自适应地调整边缘分布和条件

分布的重要性,从而有效减少领域之间的分布差异。最

后,通过在数据集上的对比实验,验证了所提方法的有效

性和优越性。尽管所提出的方法取得了令人满意的结果,
但本文仍存在一定的局限性。本文假设源域和目标域具

有相同的故障数据。然而,在实际工业生产中,故障数据

通常相对稀缺且难以获取。因此,未来工作需要针对目标

域样本不平衡的问题进行更深入的研究。
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