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Lightweight insulator defect detection algorithm based on MHD-YOLO

Guan Yanpeng Fu Pengbo Yao Huijuan

(School of Automation and Software Engineering, Shanxi University, Taiyuan 030013, China)

Abstract: Aiming at the three problems of complex background, inconsistent target size and small proportion of
defective areas to be inspected in aerial insulator images taken by UAVs during transmission line inspection, a
lightweight insulator defect detection algorithm, MHD-YOLO, is proposed. Firstly, a feature extraction network
MAFNet is introduced into the backbone network of YOLOv8, and hybrid convolution is used to enhance the feature
extraction capability of the network under complex background. Second, a feature fusion network, HS-FPN, is used to
realize feature fusion at different scales, and combined with a lightweight dynamic up-sampling method, DySample, to
improve the quality and efficiency of up-sampling. Then, a lightweight detection head CSH is designed, which
significantly reduces the number of parameters in the detection layer and the computation amount by using the shared
convolution method. Finally, the NWD loss function is introduced to improve the localization accuracy of the model for
small targets. The experimental results demonstrate that the MHD-YOLO target detection algorithm reduces the
number of parameters by 43.8% compared with YOLOvS, and improves the detection accuracy by 5.1% on the
insulator defect detection dataset. The improved algorithm is significantly more effective in detecting insulator defects,
and the model complexity is greatly reduced, providing a more effective method for deployment on embedded devices.
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Fig. 1  YOLOv8 model structure diagram
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Table 4 Comparison of loss function
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Table 5 Results of ablation experiments
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6 J J 2.061 6.7 94.5 90. 8 102. 79 95. 4
7 J J J 1. 694 5.5 94.1 90. 7 118. 40 95. 2
8 N J N/ NG 1. 694 5.5 94.8 91.7 121.12 95. 6
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Table 6 Results of comparison experiments 1

Parameters/ GFLOPs/ FPS/ mAP@o0.5/

M G fps %

Faster R-CNN 138.4 389. 4 32.52 46. 3
SSD 27.193 64. 8 37.26 64. 1
YOLOv3 103. 698 6 283.0 47. 31 91.9
YOLOv5 2.510 7.2 113. 33 87.5
YOLOv7 38.742 107. 3 68. 67 88.3
YOLOvS8 3.012 8.2 118.19 90. 5
YOLOv10 2.710 8.4 304.76 85.3
MHD-YOLO 1. 694 5.5 121.12 95.6
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Table 7 Results of comparison experiments 2
Parameters/ GFLOPs/ FPS/ mAP@0.5/
Pl .
M G fps %
FFCA-YOLO  7.120 51.20  162.23 92.4
HCF-Net 15. 292 93.16 72. 41 89.7
SCHk[28] 5. 160 20. 00 85. 67 94. 2
Hik[29] 13. 700 39. 60 52.40 92.5
CHk[30] 22. 840 — 65. 70 93.2
MHD-YOLO 1. 694 5.50 121.12 95.6
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