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摘 要:针对无人机巡检输电线路时航拍绝缘子图像中存在背景复杂,目标大小不一致和待检缺陷区域占比小三个

问题,提出了一种轻量化的绝缘子缺陷检测算法 MHD-YOLO。首先在 YOLOv8的主干网络中引入特征提取网络

MAFNet,使用混合卷积来增强网络在复杂背景下的特征提取能力。其次,使用特征融合网络 HS-FPN来实现不同尺

度的特征融合,结合轻量化的动态上采样方法DySample来提升上采样的质量和效率。然后设计了一种轻量化检测

头CSH,通过使用共享卷积的方法大幅减少检测层的参数量和计算量。最后引入 NWD损失函数来提高模型对小型

目标的定位精确性。实验结果证明,MHD-YOLO目标检测算法与YOLOv8相比,参数量降低了43.8%,在绝缘子缺

陷检测数据集上检测精度提高了5.1%。改进后的算法在检测绝缘子缺陷方面的效果有明显提升,且模型复杂度大

大降低,为部署到嵌入式设备上提供了更有效的方法。
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Abstract:Aiming
 

at
 

the
 

three
 

problems
 

of
 

complex
 

background,
 

inconsistent
 

target
 

size
 

and
 

small
 

proportion
 

of
 

defective
 

areas
 

to
 

be
 

inspected
 

in
 

aerial
 

insulator
 

images
 

taken
 

by
 

UAVs
 

during
 

transmission
 

line
 

inspection,
 

a
 

lightweight
 

insulator
 

defect
 

detection
 

algorithm,
 

MHD-YOLO,
 

is
 

proposed.
 

Firstly,
 

a
 

feature
 

extraction
 

network
 

MAFNet
 

is
 

introduced
 

into
 

the
 

backbone
 

network
 

of
 

YOLOv8,
 

and
 

hybrid
 

convolution
 

is
 

used
 

to
 

enhance
 

the
 

feature
 

extraction
 

capability
 

of
 

the
 

network
 

under
 

complex
 

background.
 

Second,
 

a
 

feature
 

fusion
 

network,
 

HS-FPN,
 

is
 

used
 

to
 

realize
 

feature
 

fusion
 

at
 

different
 

scales,
 

and
 

combined
 

with
 

a
 

lightweight
 

dynamic
 

up-sampling
 

method,
 

DySample,
 

to
 

improve
 

the
 

quality
 

and
 

efficiency
 

of
 

up-sampling.
 

Then,
 

a
 

lightweight
 

detection
 

head
 

CSH
 

is
 

designed,
 

which
 

significantly
 

reduces
 

the
 

number
 

of
 

parameters
 

in
 

the
 

detection
 

layer
 

and
 

the
 

computation
 

amount
 

by
 

using
 

the
 

shared
 

convolution
 

method.
 

Finally,
 

the
 

NWD
 

loss
 

function
 

is
 

introduced
 

to
 

improve
 

the
 

localization
 

accuracy
 

of
 

the
 

model
 

for
 

small
 

targets.
 

The
 

experimental
 

results
 

demonstrate
 

that
 

the
 

MHD-YOLO
 

target
 

detection
 

algorithm
 

reduces
 

the
 

number
 

of
 

parameters
 

by
 

43.8%
 

compared
 

with
 

YOLOv8,
 

and
 

improves
 

the
 

detection
 

accuracy
 

by
 

5.1%
 

on
 

the
 

insulator
 

defect
 

detection
 

dataset.
 

The
 

improved
 

algorithm
 

is
 

significantly
 

more
 

effective
 

in
 

detecting
 

insulator
 

defects,
 

and
 

the
 

model
 

complexity
 

is
 

greatly
 

reduced,
 

providing
 

a
 

more
 

effective
 

method
 

for
 

deployment
 

on
 

embedded
 

devices.
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0 引  言

  绝缘子作为输电线路中的重要部件,可以隔离导线与

输电塔,防止电流泄漏或接地。但是由于输电线路会受到

恶劣自然环境的影响,绝缘子出现故障的概率较高,若没有

及时更换,可能会对周围环境和人员造成危害,甚至导致大

范围的停电事故,产生巨大的经济损失[1]。近年来,随着计

算机视觉与人工智能的兴起,基于深度学习的目标检测算

法获得了长足发展[2]。将目标检测算法与无人机巡检相结

合,由无人机采集输电线路现场图像数据,通过目标识别算
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法进行数据处理,能够有效解决人工巡检所面临的问题,是
目前线路巡检的重要方式之一[3]。

目标检测算法可以分为两类:双阶段算法和单阶段算

法。双阶段算法先生成候选区域,然后再对这些区域进行

分类和精细定位,代表算法有Faster
 

R-CNN[4]、Mask
 

R-
CNN[5]等。双阶段目标检测算法由于需要生成候选区域,
导致其检测速度较慢,在实时检测方面不适用。单阶段算

直接从输入图像中预测目标类别和边界框,代表算法有

SSD[6]、YOLO[7]系列等。俞俊等[8]在SSD算法中引入残

差网络,加强了网络对绝缘子缺陷小目标检测的能力;廖丽

瑛等[9]在 YOLOv8模型中引入BiFPN-SimAM 模块来实

现多尺度特征融合,提高了模型复杂背景下对绝缘子缺陷

的识别能力;熊炜等[10]提出了一种基于 YOLOv8-GCS的

检测方法,通过结合坐标注意力模块和卷积网络,提升了对

复杂背景下绝缘子缺陷的检测能力,曾业战等[11]提出一种

基于 MFCE-YOLOv8的检测算法,通过引入多尺度注意力

机制 MIAA与跨层特征融合模块CFFM,优化了模型对尺

度大小不一致目标以及小型缺陷的检测能力;He等[12]提

出一种基于 MFI-YOLO的检测算法,针对背景复杂与故

障 大 小 不 一 的 问 题,引 入 了 多 尺 度 特 征 融 合 结 构

ResPANet与不对称卷积,提高了模型的识别精度;Zhang
等[13]针对现有检测方法识别速度慢、准确率低的问题,在
YOLOv8的基础上引入多尺度大核注意力模块 MLKA与

GSConv卷积块,提高了模型性能。
由上述文献可知,目前在绝缘子缺陷识别方面主要存

在3个问题:绝缘子图像背景复杂、目标大小不一致以及缺

陷区域占比小。而现有的研究都集中于其中的一个或两个

问题进行研究,且模型的复杂度较高,部署在嵌入式设备上

较为困难。本文将同时针对上述的3个问题,以YOLOv8
为基准模型进行专项改进,并同时对模型进行轻量化改造,
以便于改造后的模型部署在嵌入式设备中进行工作。首先

在主干网络中加入 MAFBlock(mixed
 

aggregation
 

faster
 

block)模块提升主干网络的运算速度,并且加强了主干网

络对图片中小尺度特征的提取能力;然后在颈部网络中引

入 HS-FPN(high-level
 

screening-feature
 

fusion
 

pyramid
 

networks)模块[14]和DySample模块[15]实现多层级特征融

合,提升特征图上采样的质量和效率。其次设计了一种轻

量化的检测头CSH(convolutional-shared
 

head)优化检测

层,使用共享卷积的方法,大大减少了检测层的计算量。最

后采 用 NWD(normalized
 

wasserstein
 

distance)评 价 指

标[16]代替CIoU,提升了网络对小目标的检测能力,解决了

CIoU对小目标检测时的尺度敏感和位置敏感问题。

1 YOLOv8模型

  本文使用YOLOv8作为基准模型,其基础网络结构主

要由主干网络(backbone)、颈部网络(neck)和头部网络

(head)组成[12],如图1所示。

图1 YOLOv8模型结构图

Fig.1 YOLOv8
 

model
 

structure
 

diagram

主干网络主要负责对输入图片进行特征提取,颈部网

络将主干网络所提取不同深度的特征进行融合,头部网络

包含3个不同尺度的检测头,使用颈部网络生成的特征图

来预测目标的类别、位置以及预测框的置信度。

2 改进 MHD-YOLO模型

  在使用无人机航拍巡检输电线路中的绝缘子时,需要

与输电线路保持安全距离,这会导致图片中绝缘子缺陷区

域占比较小且目标大小不一致;由于输电线路分布广泛,所
以航拍的图像还会存在背景复杂的问题;考虑到该算法的

应用场景,需要进行轻量化设计以便于嵌入式设备的应用。
综合以上问题,本文在YOLOv8模型的基础上进行的以下

改进,改进后的网络结构如图2所示。

2.1 主干网络

  考虑到图片中背景复杂的问题,在主干网络部分引入

MANet(mixed
 

aggregation
 

net)来增强其在复杂背景下的

特征提取能力[17]。MANet使用混合卷积结构,将3种典

型的卷积变体(用于通道特征再校准的1×1旁路卷积,用
于空间特征处理的深度可分离卷积,用于增强特征层次集

成的C2f模块)融合在一起,从而在训练阶段产生更加多样

化的梯度流,使图像的特征在空间特征、通道特征和层次特

征上得到全面的表达。面对背景复杂的图片,具有更强的

特征提取能力,其结构如图3所示。

MANet的运算过程可以用以下的式(1)表达。式中
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图2 MHD-YOLO模型结构图

Fig.2 MHD-YOLO
 

model
 

structure
 

diagram

图3 MANet结构图

Fig.3 MANet
 

structure
 

diagram

Fmid 的通道数为2c,F1,F2,…,Fn 的通道数为c。输入首

先经过Conv1变成Fmid,再分为3部分,左侧经过标准卷

积分支Conv2生成F1,中间经过深度可分离卷积DSConv
(depthwise

 

separable
 

convolution)分支生成F2,右侧经过

C2f模块分支生成F3,F4,…,Fn。 生成的F1,…,Fn 的通

过一个相加操作后再经过一个1×1的卷积来融合、压缩3
种类型特征的语义信息,生成通道号为2c的Fout,表达式

如式(2)所示,其中 ‖ 表示Concat操作。

Fmid =Conv1 Fin  
F1=Conv2 Fmid  

F2=DSConv Conv3 Fmid    
F3,F4=SplitFmid  

F5=ConvNeck1 F4  +F4

F6=ConvNeck2 F5  +F5

…

Fn =ConvNeckn Fn-1  +Fn-1

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

(1)

Fout=Convo F1‖F2‖…‖Fn  (2)

FasternetBlock[18]利用特征图中通道之间的冗余性,
使用PConv(partial

 

convolution),仅对输入特征图的一部

分通道进行卷积操作,减少了冗余的计算,从而更高效地

提取图片的空间特征,其结构如图4所示。
一般情况下,输入和输出特征图具有相同数量的通

道。此时,PConv的每秒浮点运算次数仅为:
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图4 PConv结构图
Fig.4 PConv

 

structure
 

diagram

G =h×w×k2×c2p (3)
其中,h、w 分别表示图片的宽度和高度,k 表示卷积

核的尺寸,cp =c×r,c是输入特征图的总通道数,r是部

分比例,当取r=
cp

c =
1
4

时,PConv的运算次数仅为普通

  

卷积的
1
16
。取r=

1
4

时,访问次数仅为普通卷积的 1
4
。

本文中的FasterBlock均选取r=
1
4
。

将 MANet的ConvNeck部分替换为FasternetBlock
得到 MAFNet,可以在保留 MANet的特征提取能力的基

础上进行更快的进行图像识别。MAFNet的结构如图2
上方所示。

2.2 颈部网络

  由于图片中待识别目标存在大小不一致的问题,这
会增加模型准确识别缺陷的难度。故引入 HS-FPN模

块来实现多尺度的特征融合。HS-FPN的结构如 图5
所示。

图5 HS-FPN结构图

Fig.5 HS-FPN
 

structure
 

diagram

  HS-FPN主要由两部分组成:特征选择模块和特征融

合模块。输入特征图的大小为fin∈RC×H×W,其中C 表示

通道的数量,H 表示特征图的高度,W 表示特征图的宽

度。在特征选择模块中,输入的特征图会首先经过 CA
(channel

 

attention)模块处理,其结构如图6所示。

图6 CA模块结构图

Fig.6 CA
 

module
 

structure
 

diagram

在CA模块中,特征图会分别进行全局平均池化和全

局最大池化,将得到的两个结果组合得到输出特征,随后

使用Sigmoid激活函数来确定每个通道的权重值,得到

fCA ∈RC×1×1。 其中最大池化从每个通道中提取最相关的

数据,而平均池化从特征图中均匀地获取所有数据。因此

CA模块同时使用这两种池化方法可以从每个通道提取最

具代表性的信息,同时最小化信息损失。随后,通过将权

重信息与对应尺度的特征图相乘来生成过滤后的特征图。
在特征融合模块中,引入SFF(select

 

feature
 

fusion
 

module)模块来进行不同维度的特征融合,其结构如图7
所示。

SFF模块通过使用高维度特征作为权重来选择性地

融合低维度特征,过滤掉嵌入在低维度特征中的基本信

息。如图中所示,对于输入的一对高维度特征fhigh ∈

RC×H×W 和低维度特征flow ∈R
C×H1×W1,首先使用转置卷积

(transpose
 

convolution)来扩展高维度特征,得到转置后的

特征大小为fhigh︵ ∈RC×2H×2W;然后,为了统一高维度特征

与 低 维 度 特 征 的 维 数,使 用 双 线 性 插 值 (bilinear
 

interpolation)来对高维度特征进行上采样或者下采样得到

fatt∈R
C×H1×W1;获得两个维度一致的特征后,使用CA模

块将高维度特征转换成相应的注意力权重用来过滤低维

度特征;最后将过滤后的低维度特征与高维度特征融合,

增强模型的特征表达能力,得到fout ∈R
C×H1×W1,以下展

示了特征选择的融合过程。

fatt =BI(TConv(fhigh)) (4)
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图7 SFF模块结构图

Fig.7 SFF
 

model
 

structure
 

diagram

fout =flow ×CA(fatt)+fatt (5)
式中:BI表示双线性插值,TConv表示转置卷积。双线性

插值可以简单快速的实现了对像素的直接操作,实现了图

像的缩放;转置卷积可以通过可学习的参数来适应数据,
使输出放大特征图的同时以卷积的形式重构了输入。在

图像采样过程中,利用转置卷积和双线性插值相结合的方

法可以更好的恢复高层特征的尺度。
目前主流的高效上采样器(如CARAFE[19],FADE[20]

和SAPA[21])通常采用基于内核的动态上采样模式。实验

证明,它们可以使上采样过程获得显著的性能提升,但是

由于使用了计算较慢的动态卷积和用于生成动态内核的

附加子网络,大大增加了模型的复杂程度,延长了检测时

间,在性能受限的场景下无法使用。而DySample绕过动

态卷积,从点采样的角度进行上采样,这不仅节省了资源,
而且可以直接使用Pytorch中的标准内置函数实现,加快

了计算的速度。

2.3 轻量化检测头

  在YOLOv8模型中,包含3个结构相同的检测头,其
内部结构如图8所示。

图8 检测头结构图

Fig.8 Detection
 

head
 

structure
 

diagram

可以看到,每个检测头都分为两部分,分别计算Bbox.

Loss与Cls.Loss,两部分都分别包含了两个Conv卷积模

块(结构与图2中相同)与一个Conv2d模块。由于位于输

出层,图像的通道数量通常较大,所以在进行卷积操作时

所需要的参数量和消耗的计算量都会很大。
通过编写程序输出模型每层的参数量,发现YOLOv8

模型中Detect层的参数量占总参数量的29.7%,计算量占

比更是高达41.6%。如果可以减少Detect层的卷积数量,
那么就可以大大降低模型的复杂度。基于这个思想,本文

提出了一种共享卷积的轻量化检测头CSH。其结构如图9
所示。

图9 CSH结构图

Fig.9 Convolutional-shared
 

head
 

structure
 

diagram

由于每个Conv模块中都包含一个3×3的卷积,多次

使用会带来巨大的参数量和计算量,故尝试让3个检测头

共用两个 Conv模块,使原本的6个 Conv模块减少为

2个,之后再连接各自的Conv2d模块实现不同的输出。实

验表明,改进后模型参数量与计算量均显著下降,同时其

平均准度均值几乎不受影响。

2.4 NWD损失函数

  YOLOv8
 

作为当前先进的目标检测框架,广泛应用于

各类检测任务。然而,现有的IoU度量方法在微小目标检

测中对目标尺度的变化敏感,对位置偏移的敏感,这会导

致微小目标的IoU 计算值波动剧烈,从而导致误检或漏

检。由于本文检测目标绝缘子属于微小目标检测的范畴,
为了解决以上问题,提出了在YOLOv8框架中使用NWD
作为IoU的替代方案。
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NWD通过将目标边界框建模为二维高斯分布,计算

其 Wasserstein距离,并进行指数归一化,使其值保持在

0~1之间。相比IoU,NWD具有更强的尺度适应性和更

平滑的梯度变化,可有效缓解IoU在微小目标检测中的局

限性。其详细运算过程如下:
在NWD方法中,目标检测框B=(Cx,Cy,w,h)被建

模为二维高斯分布N(μ,􀰑)。其中,μ=
Cx

Cy

􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 为高斯分

布的均值向量,表示边界框的中心坐标,其中Cx 和Cy 分别

表示边界框的中心横坐标和纵坐标;协方差矩阵 􀰑 =
w2

4 0

0 h2

4

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

,表示边界框的尺度信息,其中w 和h 分别表

示边界框的宽度和高度。

Wasserstein距离是一种衡量两个分布相似度的方法,
对于两个二维高斯分布N1(μ1,􀰑1)和N2(μ2,􀰑2),其二

阶 Wasserstein距离计算公式为:

W2
2=‖μ1-μ2‖22+Tr􀰑1+􀰑2-2 􀰑

1
2
1 􀰑2􀰑

1
2
1  

1
2  
(6)

为了使 Wasserstein距离与IoU兼容,并归一化到[0,1]
区间,NWD通过指数归一化定义为:

NWD =exp-
W2

2

C  (7)

其中,C 是一个与数据集相关的归一化常数,通常设

为数据集中目标的平均尺度。该归一化方式确保NWD值

在0~1之间,使其能直接替换
 

IoU。

3 实验设置

3.1 数据集

  本文使用的数据集来自于中国输电线路绝缘子数据

集(chinese
 

power
 

line
 

insulator
 

dataset,
 

CPLID)[22],该数

据集共包含绝缘子与缺陷绝缘子图片共848张。将这些

图片按照8∶1∶1的比例将图片划分为训练集,验证集和测

试集。
由于图片数量较少,训练过程中可能出现过拟合的情

况,故使用图像增强的方式来扩充图片数量。包括添加高

斯噪声、旋转、裁剪、拼接和调整对比度,来模拟实际航拍

过程中可能遇到的气候问题和由于拍摄角度导致的图片

质量下降问题。先进行数据集划分再进行图像增强,可以

有效的避免训练集、测试集和验证集出现图像交叉的情

况。增强后的数据集包含5
 

088张图片。

3.2 评价指标

  本文使用模型参数量(parameters)与模型计算量

(GFLOPs)来评估模型的复杂性;使用精确率(precision,
 

P)、召回率(recall,R)与平均精度均值(mAP,本文取IoU
阈值为0.5计算)来评估模型检测精度;使用检测帧数

(FPS)来评估模型的检测速度,相关参数的计算公式如下:

P =
TP

TP+FP
(8)

R =
TP

TP+FN
(9)

FPS =
Numbers
Time

(10)

AP =∫
l

0
P(R)d(R) (11)

mAP=
∑

N

i=1
APi

N
(12)

式中:TP(true
 

positive)表示模型预测为正类且目标为正

类的数量,FP(false
 

positive)表示模型预测为正类但目标

为负类的数量,FN(false
 

negative)表示模型预测为负类但

目标为正类的数量。Numbers表示图片总数,Time 表示

检测一轮照片所需要的时间。AP 表示目标的PR 曲线面

积,APi 表示第i类目标的PR 曲线面积,N 表示检测目

标的类别总数。

3.3 实验环境

  实验设备详细参数及软件配置如表1所示。实验中

的超参数设置如表2所示。

表1 实验设备详细参数及软件配置

Table
 

1 Experimental
 

equipment
 

detailed
 

parameters
 

and
 

software
 

configuration
名称 参数

GPU NVIDIA
 

GeForce
 

RTX
 

4090
 

24G
CPU

 

i9-13900k
内存 124

 

G
操作系统 Ubuntu

 

22.04
编程语言 Python3.10.15

深度学习框架 Torch2.3.0+CUDA11.8

表2 超参数设置

Table
 

2 Hyper-parameter
 

setting
参数名 参数值

训练轮数 300
批次大小 64
学习率 0.01
动量 0.937

学习率衰减系数 0.000
 

5
优化器 SGD

图像尺寸 640×640

4 实验结果与分析

4.1 主干网络改进实验

  为了验证 MAFNet对主干网的优化效果,进行实验使
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用了多种目前主流的特征提取模型来优化YOLOv8的主

干网络,表中的模型1、2、3、4、5、6,分别对应 YOLOv8原

模型、Efficientnet[23]、HGNet[24]、DyConv-HGNet、MANet
与 MAFNet。对比实验结果如表3所示。

表3 主干网络对比

Table
 

3 Comparison
 

of
 

backbone
 

networks
模型 Parameters/M GFLOPs/G P/% R/% FPS/fps mAP@0.5/%
1 3.012 8.2 92.4 89.6 118.19

 

90.5
2 4.013 9.5 92.6 89.2 108.99

 

90.6
3 2.359 7.0 91.4 89.5 92.60

 

89.8
4 2.565 6.9 91.2 90.1 113.11

 

92.1
5 3.894 10.3 92.5 92.6 96.62

 

94.0
6 3.189 8.5 92.7 92.0 102.91

 

93.8

  由实验数据可知,使用Efficientnet优化主干网络会使

模型参数俩增加33%,计算量增加16%,降低检测速度,但
是对平均检测精度的提升微乎其微,只有0.1%;使用

HGNet优化主干网络可以减少模型复杂度,但是会同时降

低检测速度与平均检测精度;使用DynamicConvolution[25]

改进后的 HGNet来优化主干网络,可以在保持模型复杂

度较 低 的 前 提 下,较 明 显 的 提 升 平 均 检 测 精 度;使 用

MANet优化主干网络会使平均检测精度有较大提升,但
同时也会使模型变得复杂,并且明显拖慢检测速度;在此

基础 上 加 入 FasternetBlock 组 成 MAFNet,网 络 中 的

PConv模块可以在小幅度降低平均检测精度的条件下大

幅度减少模型的复杂度,并且加快检测速度。
最后将 MAFNet与 YOLOv8模型进行对比,可以看

到模型的参数量和计算量有小幅度增加,检测速度也有所

下降,但是对平均检测精度的提升要明显高于除 MANet
以外的网络。权衡模型复杂度与平均检测精度,最终选择

MAFNet来优化主干网络,并且在后续的改进中,通过优

化其他模块来解决模型复杂度与检测速度的问题。

4.2 损失函数改进实验

  实验选取NWD与4种常用的损失函数进行对比,实

验数据如表4所示。

表4 损失函数对比

Table
 

4 Comparison
 

of
 

loss
 

function

损失函数 P/% R/% FPS/fps
mAP@0.5/

%
CIoU 94.1 90.8 118.40 95.2
DIoU 92.7 89.3 114.70 93.7
EIoU 91.8 92.2 120.40 94.2

Focal
 

Loss 94.7 90.1 110.43 95.3
NWD 94.8 91.7 121.12 95.6

  由表4实验数据可知,在检测精度方面,NWD损失函

数的平均检测精度较CIoU、DIoU、EIoU、Focal
 

Loss分别

提升0.4、1.9、1.4、0.7;在检测速度方面,FPS较CIoU、

DIoU、EIoU、Focal
 

Loss分别提升2.7、6.4、0.7、10.5。综

上所述,使用NWD损失函数替换原有的CIoU损失函数

可以同时提高检测精度和检测速度。

4.3 消融实验

  为了验证本文所提出的各个模块对网络改进的有效

性,进行了5组消融实验,实验结果如表5所示。

表5 消融实验结果

Table
 

5 Results
 

of
 

ablation
 

experiments

模型 MAFNet HS-DySample CSH NWD
Parameters/

M
GFLOPs/

G
P/% R/% FPS/fps

mAP@0.5/

%
1 3.012 8.2 92.4 89.6 118.19 90.5
2 √ 3.189 8.5 92.7 92.0 102.91 93.8
3 √ 1.958 7.3 92.8 91.3 120.32 91.7
4 √ 2.372 6.7 91.9 88.3 135.49 90.2
5 √ 3.012 8.2 93.0 90.5 124.61 91.6
6 √ √ 2.061 6.7 94.5 90.8 102.79 95.4
7 √ √ √ 1.694 5.5 94.1 90.7 118.40 95.2
8 √ √ √ √ 1.694 5.5 94.8 91.7 121.12 95.6
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  其中模型1为YOLOv8模型,模型2、3、4、5分别添加

了表中标有“√”的模块。由表中数据可知,第二章中提到

的4种改进均对模型有不同程度的提升。在主干网络中

使用 MAFNet可以在复杂背景下更好的提取图片不同尺

度的特征,检测精度为93.8%,与YOLOv8模型相比提高

了3.3%。使用 HSFPN与DySample改进颈部网络,可以

增强模型对不同尺度特征融合的能力;由于DySample的

点采样模式,模型的总参数量由3.189M降低至2.061M,
降低了35%,总计算量由8.5G 减少至6.7G,降低了

21%。轻量 化 检 测 头 CSH 的 引 入 会 使 检 测 精 度 减 少

0.2%,但是加快模型的检测速度并进一步降低模型的复

杂度,在之前改进的基础上,模型的总参数量降低了18%,
总计算量降低了18%,FPS增加了15.61,综合实验数据分

析,使用共享卷积的方式来优化检测头是一次成功的改进

引入用于小型目标检测的NWD损失函数,在绝缘子缺陷

检测方面要明显优于CIoU损失函数,FPS由118.40提升

至121.12,检测精度由95.2提升至95.6。

4.4 对比实验

  为了验证 MHD-YOLO网络的性能,在相同的实验环

境和实验超参数下,使用常见的目标检测算法 Fast
 

R-
CNN、SSD、YOLO系列与 MHD-YOLO对比,实验结果如

表6所示。

表6 对比实验结果1
Table

 

6 Results
 

of
 

comparison
 

experiments
 

1

模型
Parameters/

M
GFLOPs/

G
FPS/

fps
mAP@0.5/

%
Faster

 

R-CNN 138.4 389.4 32.52 46.3
SSD 27.193 64.8 37.26 64.1

YOLOv3 103.698
 

6 283.0 47.31 91.9
YOLOv5 2.510 7.2 113.33 87.5
YOLOv7 38.742 107.3 68.67 88.3
YOLOv8 3.012 8.2 118.19 90.5
YOLOv10 2.710 8.4 304.76 85.3
MHD-YOLO 1.694 5.5 121.12 95.6

  分析表6中数据可知,改进后的算法 MHD-YOLO与

其他常见的目标检测算法相比,主要的性能指标都有所提

高。与Fast
 

R-CNN、SSD、YOLOv3、YOLOv5、YOLOv7、

YOLOv8、YOLOv10模型相比,在模型复杂度方面,MHD-
YOLO的参数量分别减少了136.7、25.5、102.1、0.8、37、

1.3M 和1.0M,计算量分别减少了383.9、59.3、277.5、

1.7、101.8、2.7G和2.9G;在检测精度方面,平均精度均

值分别提高49.3%、31.5%、3.8%、8.2%、7.3%、5.1%和

10.4%;在检测速度方面,除了专注于提高检测速度的

YOLOv10模型,MHD-YOLO的检测速度要快于其他的

常见模型。

FFCA-YOLO[26]和 HCF-Net[27]在小型目标检测方面

性能表现优越的,FFCA-YOLO融合了Transformer编码

器与自注意力机制,增强对空间细节的建模能力,提高了

密集区域和复杂背景下对小目标的检测能力;HCF-Net将

多尺度特征提取和扩张卷积与通道注意力机制相结合,同
时引入CEM模块增强语义和上下文信息,提升了小型目

标检测的鲁棒性和准确性。
文献[28-30]同为基于 YOLO改进模型,用于绝缘子

缺陷检测的研究。文献[28]基于YOLOv3模型进行改进,
通过使用双向特征金字塔网络结构进行不同尺度特征间

的双向融合,解决了连续卷积下小目标信息丢失的问题。
文献[29]基于YOLOv11模型做出优化,设计了空间注意

力增强模块来补偿被遮挡区域的响应损失,来抑制背景

多样化对特征图的干扰。文献[30]在YOLOv8网络增加

了小目标检测层,并添加注意力与卷积混合模块,提出了

加权双向路径聚合网络替代路径聚合网络,防止特征融

合过程中原始特征的丢失,提高多 尺 度 目 标特征的融

合度。
上述5篇文献均为近期性能较好的目标检测模型,除

了 HCF-Net以 外 均 以 YOLO 为 基 准 模 型,将 MHD-
YOLO与其进行对比,实验结果如表7所示。

表7 对比实验结果2
Table

 

7 Results
 

of
 

comparison
 

experiments
 

2

模型
Parameters/

M
GFLOPs/

G
FPS/

fps
mAP@0.5/

%
FFCA-YOLO 7.120 51.20 162.23 92.4
HCF-Net 15.292 93.16 72.41 89.7
文献[28] 5.160 20.00 85.67 94.2
文献[29] 13.700 39.60 52.40 92.5
文献[30] 22.840 - 65.70 93.2
MHD-YOLO 1.694 5.50 121.12 95.6

  由表中数据可知,MHD-YOLO仅在检测速度上慢于

FFCA-YOLO,在模型复杂度与精度上均优于其他模型。
对比实验的结果说明,MHD-YOLO可以在使用较低

参数量和计算量的同时保持较高的检测精度,检测效果超

过了SSD、Fast
 

R-CNN、传统的YOLO算法与近年来的新

型算法,可以更好的完成绝缘子表面缺陷检测的任务。

4.5 实验结果可视化

  图10为 YOLOv8算 法、YOLOv10算 法 与 MHD-
YOLO算法对图片的检测结果。

经过对比可以看出,在闪络痕迹的检测中,YOLOv8
算法出现了误检,YOLOv10算法出现了漏检;在破损的检

测中,YOLOv8与 YOLOv10均出现了漏检;在缺失的检

测中,两种算法都检测出了绝缘子的缺失。而改进后的

MHD-YOLO算法对3种缺陷的检测都表现良好。此外,
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图10 实验结果可视化

Fig.10 Experimental
 

results
 

visualization

注意到YOLOv10算法的边界框通常比较大,可能是由于

过度追求检测速度导致检测精度有所下降。

5 结  论

  针对无人机航拍巡检输电线路中绝缘子的图像中存

在的背景复杂、目标大小不一致和待检缺陷区域占比小3
个问题,本文提出了一种基于YOLOv8的输电线绝缘子缺

陷检测算法 MHD-YOLO。针对背景复杂的问题,在主干

网络中使用 MAFNet来加强网络的特征提取能力;针对目

标大小不一 致 的 问 题,在 颈 部 网 络 中 引 入 HS-FPN 与

DySample模块来加强网络对不同尺度特征的融合能力;
针对待检缺陷区域占比小的问题,引入在小型目标检测中

表现优秀的NWD损失函数;在此基础上还对冗余的检测

头进行了轻量化改造,大大减少了模型的参数量与计算

量,为模型在嵌入式设备上的部署提供了便捷。
消融实验表明,本文所提出的4项改进并无冲突,均

对模型的改进有着积极作用;对比实验结果表明,无论是

模型的复杂度还是检测的精准度,MHD-YOLO都要优于

SSD、Faster
 

R-CNN、YOLO 系列算法、FFCA-YOLO 与

HCF-Net。由对比实验的数据可知 MHD-YOLO的运算

速度要低于YOLOv10,因此下一阶段的目标是继续优化

算法,加快算法的检测速度。
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