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Sacral-iliac joint segmentation network integrating large kernel
gated mechanisms and dual attention

Yan Wuyjun Jing Ying Xu Yingchen Zhang Xiaoli Wang Cheng
(School of Computer Science and Technology, Taiyuan Normal University,Jinzhong 030600, China)

Abstract: Ankylosing spondylitis is a chronic inflammatory disease whose early diagnosis depends on the accurate
identification of pathological features in the sacroiliac joint. However, due to the complex anatomical structure of the
sacroiliac joint, the multiscale heterogeneity of lesions, as well as interference from partial volume effects and noise in
CT imaging, the accuracy of traditional segmentation methods often fails to meet clinical demands. To address these
challenges, this study proposes a Multiscale Attention-Guided U-Net (MAG-UNet). The model enhances local-global
feature representation through a Multiscale Feature Fusion (MFF) module, integrates spatial-channel adaptive
weighting via a Dual-path Attention (DA) mechanism, and introduces a Large-kernel Grouped Attention Gate (LGAG)
to resolve cross-scale feature coupling issues. Experiments conducted on a dataset provided by Shanxi Bethune Hospital
demonstrate that MAG-UNet achieves significant performance improvements in sacroiliac joint CT segmentation, with
a Dice coefficient of 92. 4% and an Intersection over Union (IoU) of 86. 0%, surpassing the baseline U-Net model by
3.4% in IoU. This study provides a reliable technical solution for the early diagnosis of AS, offering substantial clinical
value and broad potential for practical application.
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PERERYSZ MR, SCO0 25 R TR LAY ITAL $5 4R . B 45 Dice &
B ToUGE I be) FUKS 1 B (Precision) . 5256 A4 X b A5 7
AAEARUER 3D Unet HF A AN [F] 7 B 7B H G AR AR, LI
R A 5T 32 B9 DA-Block ik,

NFRHE TRT LA, AN (R A T AL R T Y
PEREL A Ir 4R 7. R 2 751 A DA-Block Ji& . BB Y
Dice & #(. IoU F Precision 43 5l i5 | T 91. 5. 84.4 Al
90. 9, % TAR#ER 3D Unet(Dice 2 90. 4,ToU K 82. 6,
Precision 24 89. 2) ., 4 T B i 42 7. 3 3 ) b il v 3
JifiHe, 4 SE.CBAM #l ECA,DA-Block 7£ 3 11545 14
SR T BRI OLH UE W] T H AR Rl 7S Ta) RE JE {5 S 07 T
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*2 FAEAFEAHFERKE A BPE
Table 2 Comparison test of different attention 2.4 ZREBREXILRE
i 70 Dice ToU Precision AT HRIT 2 R 2 BRI O T 43 BT 55 A9 5
3D Unet 90. 4 82.6 89. 2 AT T AR HERZH G R, G011 X 1] [3X
LSE 90. 7 83. 0 89, 5 3].[5X5].[1X1, 3X3].[3%X3, 3X3].,[1X1, 3X3,5X
CBAM oo G - STRI3X3, 55, 7X 7], KHLERME 3 Himk. & REM 4
BRI T — B R, H[1X 1, 3X3, 5X5]4H 41 IoU
“Non_Local - 90.6 828 894 (83. 290 FIBHCRE (23, 14 M)y IR, X RV Z RS
TECA 88.4 796 87.6 TR A A R 5 MR X R [F R AT R B 3 L e e 533
DA _Block 91.5 84.4 9.9 WEHE 1 PERE N T8 B 22 1 2 RLF P
®3 FAEAEHEBZEK/N AT
Table 3 Comparison test of different convolution kernel sizes
Conv. kernels [1] [3] [5] [1,3] [3.3] [1,3,5] [3,3,3] [3,5,7]
ToU 79. 6 82. 6 80. 2 82.5 81. 6 83.2 80. 8 81.0
Params 22.42 22. 45 22. 54 22. 48 22. 50 23. 14 22.58 22. 62
2.5 GHEbsRI® 90. 8%, MEM] T 22 RUBERAAE SR BB AE T . 51 A LGAG Bk

T %53E MAG-UNet H & 508 (9 BTk, A SCilE AT T 96 J& »ToU 24 83. 0% , Dice 2N 90. 6%, £ W R #B-2 R 5 B
Al 525, F 5| A DA-Block . MFF #1 LGAG #He, Jf: 5 K4k A PRI . 3 AR A i AT, ToU 75 %1 86. 0%,
B (3D U-NeO#ATXT LG, LI 4R NE 4 Jrox, 5] A Dice ZE R 92. 4% . Z B #HITE 23. 98 M, F 40 JB/R T 4%
DA-Block B 5 ., ToU M 82. 6 % 2T+ = 84. 4% , Dice R E BES TR M. SC86 %, DA-Block . MFF 1 LGAG
90. 42642 FHZE 91. 5% BE T ZS MEE T E AALE AR BIE MAG-UNet " HpRIEF, W35 52 T+ T B 04 43 5 P
. 5IA MFF # 8 )5, ToU 2 F} & 83. 2%, Dice & N fe. &9 JB/R T 1H Al SC g0 AT Ak X L 45 2R

x4 HEXRER
Table 4 Ablation experiment results

H Da_Block MFF LGAG IoU Dice Precison Params/MB
J 82. 6 90. 4 89. 2 22. 45
J J 84. 4 91.5 90. 9 23.01
N/ N 83. 2 90. 8 89.5 23.14
NG J 83.0 90. 6 89. 4 23.09
J J J 84.8 91.7 91.2 23. 45
J J J 84. 6 91. 6 91.0 23. 30
N N N N 86.0 92.4 93. 3 23.98

2.6 WHRNKERSH

T TR B b R s AN [ TR A R DG T A B b iy 22
S ARTFGE R X B S 56 v s A 45 S 155 78 1) 43 B & SR R AT
T ATRAL A AT . I SE H BEALIE I T 4 4054 (as b, o
O BEAT A bEs R E 10 iR, BT CT AR |5
PRy GT MR #1455 . 45 R /R, MAG-UNet
TEAT NG B I i 2 00 T AT AL, 0 AR B 4% X 43 )
i TR BT SR A G R E . G140, MAG-UNet 30 T 45 43 Fil i
Image  Ground Truth 3D U-Net 3D UNet-MFF 3D UNet-DA MAG UNet A1 B, BE S TR v b AR 3 E AR X8R, HAEBE baed

B O BERE G CT BAAR 4N i T B 52 30 25 5 1 B WA T AR . AH L Z R UNETR Hll SegNet 4545 A
Fig. 9 Comparison of ablation experimental results of sacroiliac TE H¥ril EZU@J_'TEFEﬁg’@%ﬁ*ﬂﬁ/\ L ME DL Eﬁﬁ%”
joint CT image segmentation E%éﬂi*@ o ﬂ}%{tﬁ}*ﬁg’ﬁﬁT MAG-UNet Tféﬂf]fﬁﬁ |
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Fig. 10 Segmentation result visualization

i R 0 A 7 TR DG A R BT AR S B e R N Y

A SC 5 ILTE H R B EE B KU e S B G AR BT T R O

T CT AR5 F b B 3408 BE AR g kb2 SRBOH L L B0

9o ek Ay L TR S I R Pk K B T —F i Y MAG-UNet

WA, ZAR BRI T 2 RO FHE flG (MFEF) B 42 )R T

E AL (DA TR G| 5 B 3 N4 38 (LGAG) Bk, Jd id

22 )2 YRR 52 W55 38 iR SR W A UM T 1 52 2 ik ) 45 1

B/ I ek BRI IR RS, S 25 2R 38 W] MAG-UNet 1E

Dice REH ToU P dn L0 T E R/ A HIIriE  BIET

FEHARM . AT ITEAAL Ty KA o 5 B A B 198 BE 1k

S WAt T — AT EE TR R Ry 2R i i

B ORI AR BT O il B ) 0 R AR R AR A BT S AR T

B B S 1), RN R AE R B MR R A RS

1, MAG-UNet J& 31 W] & 09 1 PR I F3 AN 18, ) Dy 48 5

I3 M AR AL B A Al 1 e ) 45 R 0 B ROk B SR R HL

£ NS I NS E R A = o2 B R O NG S 8 e o 4 &

PR 8 5 A0 A 41 3 A% LA R I R S I i 75 oK 45 6 &

RS FEAR R (an MRD 2 THi 8 1 Ak 7 . 3xX 28 etk i

b — 25 B TR (1 77 A I PR S 1, 4 3h R Be Sl B2

Wr 22 GEAE KU SR BE LR 127 H I IR A T
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