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摘 要:强直性脊柱炎是一种慢性炎症性疾病,其早期诊断依赖于骶髂关节病变特征的准确识别。然而,由于骶髂关

节解剖结构复杂、病灶呈现多尺度异质性,且易受CT部分容积效应及噪声干扰,传统分割方法的精度难以满足临床

需求。为此,提出了一种基于多尺度注意力融合的网络模型(MAG-UNet)。该模型通过多尺度特征融合模块(MFF)
强化局部-全局特征协同表征,结合双路径注意力机制(DA)的空间-通道自适应加权,并引入大核分组注意力门控

(LGAG)以解决跨尺度特征耦合问题。在山西白求恩医院提供的数据集上进行的实验表明,MAG-UNet在骶髂关节

CT分割中取得了显著的性能提升,Dice系数达到92.4%,IoU达到86.0%,较U-Net基线模型提升3.4%(IoU)。本

文为强直性脊柱炎的早期诊断提供了可靠的技术支持,具有重要的临床应用价值与推广潜力。
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Abstract:Ankylosing
 

spondylitis
 

is
 

a
 

chronic
 

inflammatory
 

disease
 

whose
 

early
 

diagnosis
 

depends
 

on
 

the
 

accurate
 

identification
 

of
 

pathological
 

features
 

in
 

the
 

sacroiliac
 

joint.
 

However,
 

due
 

to
 

the
 

complex
 

anatomical
 

structure
 

of
 

the
 

sacroiliac
 

joint,
 

the
 

multiscale
 

heterogeneity
 

of
 

lesions,
 

as
 

well
 

as
 

interference
 

from
 

partial
 

volume
 

effects
 

and
 

noise
 

in
 

CT
 

imaging,
 

the
 

accuracy
 

of
 

traditional
 

segmentation
 

methods
 

often
 

fails
 

to
 

meet
 

clinical
 

demands.
 

To
 

address
 

these
 

challenges,
 

this
 

study
 

proposes
 

a
 

Multiscale
 

Attention-Guided
 

U-Net
 

(MAG-UNet).
 

The
 

model
 

enhances
 

local-global
 

feature
 

representation
 

through
 

a
 

Multiscale
 

Feature
 

Fusion
 

(MFF)
 

module,
 

integrates
 

spatial-channel
 

adaptive
 

weighting
 

via
 

a
 

Dual-path
 

Attention
 

(DA)
 

mechanism,
 

and
 

introduces
 

a
 

Large-kernel
 

Grouped
 

Attention
 

Gate
 

(LGAG)
 

to
 

resolve
 

cross-scale
 

feature
 

coupling
 

issues.
 

Experiments
 

conducted
 

on
 

a
 

dataset
 

provided
 

by
 

Shanxi
 

Bethune
 

Hospital
 

demonstrate
 

that
 

MAG-UNet
 

achieves
 

significant
 

performance
 

improvements
 

in
 

sacroiliac
 

joint
 

CT
 

segmentation,
 

with
 

a
 

Dice
 

coefficient
 

of
 

92.4%
 

and
 

an
 

Intersection
 

over
 

Union
 

(IoU)
 

of
 

86.0%,
 

surpassing
 

the
 

baseline
 

U-Net
 

model
 

by
 

3.4%
 

in
 

IoU.
 

This
 

study
 

provides
 

a
 

reliable
 

technical
 

solution
 

for
 

the
 

early
 

diagnosis
 

of
 

AS,
 

offering
 

substantial
 

clinical
 

value
 

and
 

broad
 

potential
 

for
 

practical
 

application.
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0 引  言

  骶髂关节炎(Sacroiliitis)是一种由免疫介导的慢性炎症

性疾病,主要累及骶髂关节及脊柱。在众多相关疾病中,强
直性脊柱炎(ankylosing

 

spondylitis,
 

AS)以其高发病率和典

型性成为最具代表性的病症[1]。流行病学统计显示,强直性

脊柱炎的患病率介于0.1%~0.5%,且男性患者比例较

高[2]。随着疾病的进展,患者常出现关节僵硬、疼痛及活动

受限等症状,严重时甚至可能导致关节融合,显著影响生活

质量[3-4]。然而,由于早期症状隐匿且缺乏特异性,许多患者

在确诊时往往已处于中晚期,这无疑增加了诊断和治疗的难

度[5-6]。医学影像技术的革新正驱动着临床诊断范式的深刻
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变革。计算机断层扫描(computed
 

tomography,CT)凭借其

亚毫米级空间分辨率与多平面重建能力,在骨关节系统疾病

诊断中展现出独特优势[7]。特别是在强直性脊柱炎骶髂关

节病变的诊断中,CT影像突破了传统X线平片的局限,实
现了关节间隙、骨皮质和骨髓腔的三维可视化,精准量化了

关节间隙狭窄和骨质侵蚀[8]。然而,影像数据的精准挖掘依

赖于高效的分割技术。传统图像分割技术(如阈值分割、区
域生长和聚类分析)在解剖结构复杂、对比度低的骶髂关节

影像中表现欠佳,制约了自动化诊断系统的临床应用效能。
深度学习技术的快速发展为医学影像分割领域带来了革命

性突 破。2014 年 Long等[9]提 出 的 全 卷 积 网 络 (fully
 

convolutional
 

network,FCN)首次实现了端到端的像素级预

测,随后,Ronneberger团队[10]设计的 U-Net通过 U形编解

码架构和跳跃连接机制显著提高了医学影像分割精度。针

对U-Net的局限性,研究者们提出了多种改进,如
 

Çiçek
等[11]开发的3D

 

U-Net,通过三维卷积核优化了医学体数据

建模;Zhou等[12]提出的 U-Net++,优化了多尺度特征融

合;Oktay等[13]引入的Attention
 

U-Net通过空间注意力机

制提升了对病灶区域的关注;近期武丽团队[14]进一步在U-
Net框架中融入公平因子,通过半监督学习机制缓解了标注

数据稀缺场景下的模型偏差问题。许超等[15]改进Swin
 

Transformer实现膝骨关节炎X光影像自动诊断;王霞霞

等[16]构建双阶段网络增强超声图像分割的抗噪能力。此

外,结合目标检测与语义分割的模型(如 Mask
 

R-CNN[17]和
DeepLab系列[18])在复杂病灶处理中表现优异。深度学习在

骶髂关节疾病的自动诊断与图像分割中展现出巨大潜力。
结合放射组学与3D

 

CNN的方法显著提升了骶髂关节炎病

灶的识别与分级效果[19-22]。
尽管医学影像分割技术取得进展,但在处理解剖结构

复杂、边界模糊的骶髂关节影像时,仍面临诸多挑战。传统

的CNN和U-Net模型在多尺度特征建模、空间与通道信

息交互以及局部与全局上下文平衡上存在不足,导致对微

小骨侵蚀、低对比度炎性水肿等病灶分割不精确,难以满足

临床高精度需求。为此,本文提出改进的3D
 

U-Net,通过

多层次特征优化提升分割性能。
具体而言,本研究的创新点如下:

1)针对骶髂关节CT图像中解剖结构与病灶尺度的显

著差异,设计异构卷积核(1×1、3×3、5×5)并行提取机制,
增强了模型对微小病灶和复杂解剖边界的表征能力。

2)为解决传统卷积操作在特征交互中的局限性,提出

了结合位置注意力(position
 

attention
 

module,PAM)和通

道注意力(channel
 

attention
 

module,CAM)的双路加权策

略,动态调节特征图的权重分布,精确提取细节特征,显著

提高了复杂病灶分割任务的精度与鲁棒性。

3)针对局部细节与全局上下文信息融合不足的问题,
设计了自适应门控机制,通过多级特征聚合,高效整合局部

纹理与全局语义,提升了复杂结构分割的适应性与准确性。

1 网络构建
 

1.1 MAG-UNet介绍

  山西白求恩医院作为山西省大型三甲医院,其风湿免

疫科在强直性脊柱炎(AS)及骶髂关节炎等相关疾病的诊

疗方面积累了丰富的临床经验,骶髂关节CT影像分析在

临床评估和诊断过程中发挥着重要作用。然而,传统手动

分割方法存在三大核心问题:效率瓶颈、主观误差以及微小

病灶漏诊,严重制约临床诊断效率与准确性。为解决这一

问题,本文提出了一种创新的 MAG-UNet模型,如图1所

示,旨在提高CT影像的分割精度和效率。

图1 MAG-UNet网络模型

Fig.1 MAG-UNet
 

network
 

model
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  该模型基于经典的3D
 

U-Net架构,采用层次化的三

维卷积编解码结构。输入为50×256×256体素的三维特

征图,编码路径通过四级下采样逐步提取特征并引入多尺

度特征融合模块(multi-scale
 

feature
 

fusion,MFF)采用

1×1×1、3×3×3和5×5×5并行卷积核,提升对不同尺

度病灶的检测能力。随后,通过四级编码器将空间维度压

缩至3×16×16并扩展通道维度至256,以提取深层语义

信息。解码路径通过四级反卷积恢复空间分辨率。模型

创新性地集成了双路注意力机制(dual
 

attention
 

block,DA
模块)和大核分组注意力门控(large-kernel

 

group
 

attention
 

gate,LGAG)模块,前者通过通道和空间的双重加权优化

特征,后者则通过扩大感受野实现局部和全局特征的动态

融合。此外,网络在每个卷积层后引入批归一化(batch
 

normalization,BN)层,提升训练稳定性与泛化能力。

1.2 高效多尺度特征融合模块

  在图像分析任务中,同时捕捉细节特征和整体结构对

模型性能至关重要。传统方法通常依赖多个独立的卷积

分支提取不同尺度的特征,但计算开销大且特征协调性较

差。为此,本文设计了一个轻量化的多尺度特征融合模块

(multi-scale
 

feature
 

fusion
 

module,MFF),如图2所示,通
过"共享基础层+多尺寸卷积"的协同设计,在保证精度的

同时降低计算复杂度。具体而言,模块首先通过一个3×
3×3卷积核生成共享的基础特征图。与传统的多路径卷

积方式不同,使用共享嵌入层能够有效减少计算冗余,从
而提升了效率。在此基础上,构建3条并行的卷积路径,
分别采用1×1×1、3×3×3和5×5×5的卷积核来提取不

同尺度的特征。小尺度卷积核专注于捕捉局部纹理细节,
中尺度卷积核聚焦于提取区域结构信息,大尺度卷积核则

负责捕捉全局空间关系,形成互补的多尺度特征。为控制

模型复杂度,MFF模块仅在浅层部署,避免深层堆叠导致

的参数爆炸。同时,每条路径仅执行一次卷积,并通过最

大池化压缩特征维度,降低计算负担并减少过拟合。最

终,通过通道维度拼接不同尺度的特征,实现深度融合,增
强模型表达能力。

MFF模块通过共享嵌入机制和多尺度融合策略,有效

解决了传统多路径卷积结构的计算冗余和参数膨胀问题,
显著提升了特征提取效率和模型性能,提供了一种高效的

多尺度特征建模方案。

1.3 DA-Block模块

  针对骶髂关节影像中解剖结构复杂、组织边界模糊的

挑战,本文设计了双路径注意力机制(dual
 

attention
 

block,

DA-Block),如图3所示。该模块通过空间-通道注意力联

合优化策略,在三维特征空间中同步增强空间定位精度与

通道语义区分度,显著提升了细粒度解剖结构的分割效

果。DA-Block采用双分支架 构 设 计:空 间 注 意 力 分 支

(position
 

attention,PAM)捕捉跨区域的空间关联性,通道

注意力分支(channel
 

attention
 

,CAM)则聚焦于关键通道

图2 MFF模块

Fig.2 MFF
 

module

的语义增强,两者的注意力信息通过加权融合机制进行动

态调整,从而精准处理复杂结构,提升对细小病变(如骨质

破坏、炎症灶等)的识别能力,抑制背景噪声干扰,并增强

关键区域的区分度。

图3 DA-Block模块

Fig.3 DA-Block
 

module

其中,设计了两个可学习的标量权重参数w1 和w2,
通过softmax归一化函数生成融合权重

 

α
 

和
 

β,其数学表

达为:

α=
e

w1

e
w1+e

w2
(1)

β=
e

w2

e
w1+e

w2
(2)

在训练过程中,w1 和w2 随网络其他参数共同优化,
无需预设固定值。该机制赋予模型根据任务需求自主调

节通道与空间注意力贡献度的能力,显著提升了特征融合

的灵活性与泛化性能。

1)DA-PAM模块

针对医学影像中目标区域空间分布不规则的特点,传

·201·



 

严武军
 

等:融合大核门控及双注意力的骶髂关节分割网络 第1期

统卷积神经网络难以有效建模长程依赖关系。为此,本文

设计了位置注意力模块(PAM),如图4所示。通过空间自

适应注意力机制动态学习特征图中各位置的权重关系,显
著提升关键区域的定位能力。

图4 PAM模块

Fig.4 PAM
 

module

给定输入特征图 A∈RC×D×H×W,PAM 的计算流程

如下:
(1)特征投影与重塑:通过1×1×1卷积生成3个特征

B,C,D ∈ RC×D×H×W,并 重 塑 为 二 维 矩 阵 B',C',D'
 

∈
RC×N(N =D×H ×W)。

(2)空间注意力矩阵生成:对B'进行转置并与C'进矩

阵乘法,得到空间注意力矩阵S∈RN×N,通过
 

Softmax函

数归一化:

Sji=
expB'Ti ·C'j  

∑
N

i=1
expB'Ti ·C'j  

(3)

其中,Sji 表示位置j对位置i的注意力权重,反映了

位置j对位置i的贡献程度。
(3)加权特征图生成:将空间注意力矩阵S 与矩阵D'

进行矩阵乘法后,得到加权特征图。

E'=α D'ST  (4)
其中,α为可学习的缩放参数,用于控制注意力特征的

贡献度。
(4)输出特征图:将输入特征图A 与加权后的特征图

逐元素相加,得到最终输出特征图E。

Ej =α∑
N

i=1
Sji·D'i  +Aj (5)

DA-PAM通过加权聚合空间上下文信息,解决了传统

卷积操作局部感受野的限制,显著提升了模型对复杂空间

特征的建模能力。该机制能够自适应地聚焦关键区域,抑
制背景噪声,为后续分割任务提供鲁棒且判别性强的特征

表示。

2)DA-CAM
医学图像中的关键信息常分布在特征图的不同通道,

因此本文设计了通道注意力模块(CAM),如图5所示。该

模块通过加权机制调整每个通道的贡献,使模型关注临床

重要特征,从而增强关键特征的表达。
给定输入特征图 A∈RC×D×H×W,CAM

 

的计算流程

如下:

图5 CAM模块

Fig.5 CAM
 

module

(1)特征图重塑:将输入特征图 A 重塑为二维矩阵

A'∈RC×N
 

(N=D×H×W)。
(2)通道注意力矩阵生成:通过矩阵乘法计算通道注

意力矩阵X∈RC×C:

xji=
expA'i·A'j  

∑
c

i=1
expA'i·A'j  

(6)

(3)通道特征重构:将通道注意力矩阵X 与输入特征

矩阵A'相乘,实现通道特征的加权重构:

F =β X·A'  (7)
其中,β为可学习的缩放因子,初始值为0,通过训练

过程自适应调整。
(4)特征图恢复:将重构后的特征矩阵F 进行逆维度

变换,恢复为与输入特征图A 相同的维度C×D×H×W,
确保空间结构的一致性。

(5)输出特征图生成:通过跳跃连接将重构后的特征

图与输入特征图逐元素相加,得到通道注意力增强后的输

出特征图E:

Ej =β∑
C

i=1
xji·A'i+Aj (8)

与DA-PAM模块不同,DA-CAM 直接对原始通道特

征进行加权融合,无需额外的卷积层。这一设计保留了通

道间的相关性,显著降低了计算复杂度。

1.4 LGAG模块

  在医学图像分割任务中,多尺度特征的融合对于提升

模型性能至关重要。为此,本文提出了大核分组注意力门

控(large-kernel
 

group
 

attention
 

gate,LGAG)机制,如图6
所示,以优化特征图融合过程,增强关键特征的表达并抑

制无关信息。LGAG
 

通过学习动态注意力系数,在网络不

同阶段精细调控信息流,提高分割精度。
与传统的

 

Attention
 

UNet采用1×1×1卷积处理特

征不同,LGAG模块在qatt(.)
 

函数中创新性地引入3×
3×3分组卷积(分别记为GCg(.)和

 

GCx(.)),用于分别处

理门控信号g 和输入特征图x。首先,经过3×3×3分组

卷积后,两者分别进行批归一化(BN(.)),并通过元素级

加法融合。随后,融合特征经过ReLU激活函数(R(.))进
行非线性变换,再通过1×1×1卷积(C(.))进一步提炼,
并经过批归一化生成单通道特征图。最终,该特征图经过

Sigmoid 激活函数(σ(.))计算出注意力系数,并与输入特

征图x 进行逐元素乘法,以生成经过注意力调控的特征图
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图6 LGAG
 

模块

Fig.6 LGAG
 

module

LGAG(g,x)。LGAG模块的整体操作可以用以下公式

描述:

qatt(g,x)=R(BN(GCg(g)+BN(GCx(x))))(9)

LGAG(g,x)=x􀱋σ(BN(C(qatt(g,x)))) (10)
其中,GCg(g)和GCx(x)代表对g 和x 进行3×3×3

分组卷积,BN(.)表示批归一化,R(.)表示ReLU激活函

数,C(.)为1×1×1卷积操作,而σ(.)为Sigmoid激活函

数,用于生成注意力系数。
相较于传统方法,LGAG采用大核分组卷积,在减少

计算开销的同时,能够捕获更丰富的空间上下文信息,增
强对关键结构的感知能力,从而有效提升医学图像分割的

准确性。

2 实验内容及结果分析

2.1 实验设置

  1)
 

实验数据

本文共收集并筛选了70例来自山西白求恩医院的骶

髂关节CT影像数据,总计约10
 

414张高分辨率切片。这

  

些切片涵盖了不同病理阶段和解剖变异,为模型的训练和

验证提供了大规模、多样化的临床样本。所有CT图像均

采用标准化 参 数 采 集,单 层 图 像 分 辨 率 为512
 

pixel×
512

 

pixel,体 素 间 距 范 围 为 0.449
 

mm×0.449
 

mm~
0.801

 

mm×0.801
 

mm,每例病例包含150~200层连续断

层图像。为确保数据标注的准确性,所有CT图像均由山

西白求恩医院经验丰富的影像科医生进行精细的手动分

割,并通过多位影像科医生的验证,有效降低了个人主观

因素对标注结果的干扰。在实验数据划分中,将70例骶

髂关节CT数据按照7∶3的比例随机划分为训练集(49例)
和验证集(21例)。图7呈现了CT影像的横断面、冠状面

和矢状面视图。

图7 三方位CT图

Fig.7 Three-dimensional
 

CT
 

image

2)实验流程

实验流程如图8所示。首先,针对CT序列图像数据

量较大的特点(单例数据尺寸为 N×512×512,N∈[50,

200]),对原始数据进行多步预处理以提高训练效率并降

低内存消耗:将输入图像尺寸统一调整为 N×256×256,
并通过方向规划确保图像空间方位的一致性;对CT值进

行线性归一化处理,将其映射至[-200,1
 

200]区间以增强

骶髂关节区域特征并抑制背景干扰;此外,通过筛选有效

切片范围,去除序列首尾不包含目标区域的切片,确保数

据集中仅保留有效解剖结构。预处理后的数据通过基于

PyTorch框架的仿射变换进行数据增强,包括随机翻转、旋
转、缩放和平移等操作,以提升模型的泛化能力。增强后

的数据输入改进后的分割网络进行训练,通过超参数优化

获得二值化的骶髂关节分割掩膜。最终,将分割掩膜与原

始CT数据进行矩阵乘法运算,得到分割结果,并使用3D
 

Slicer(v5.6.2)进行三维重建与可视化,实现分割结果的多

角度观察与定量评估。

图8 实验流程图

Fig.8 Experimental
 

flow
 

chart

3)
 

实验环境

本文实验中模型训练所使用的硬件配置详细为:CPU
 

为
 

Intel
 

Xeon
 

Platinum多核处理器(10
 

vCPU,2.6
 

GHz),
配合60

 

GB
 

DDR4内存,GPU为与NVIDIA
 

GeForce
 

RTX
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GB)。实验采用
 

Pytorch2.2.0深度学习框

架完成,结合CUDA
 

11.8和cuDNN
 

8.9.4加速库,采用

Adam优化器,权重衰减为1×10-4。batchsize设置为1。
网络训练了300个Epoch。初始学习率为1×10-4。在训

练过程中,采用的数据增强策略如下:以0.5的概率进行
 

随机翻转、随机仿射变换、随机伽马校正等。

4)
 

评价指标

为了全面评估模型的分割性能,本文采用了4个常用

指标:Dice系数(Dice
 

similarity
 

coefficient,DSC)、交并比

(intersection
 

over
 

union,IoU)、精确率(Precision)和召回

率(Recall)。这些指标定义如下:
(1)Dice系数衡量预测分割结果与真实标签的相似

度,值越接近1表示分割效果越好,公式为:

Dice=
2×|X ∩Y|
|X|+|Y|

(11)

其中,X 为预测结果,Y 为真实标签,|X∩Y|为交集

大小,|X|和|Y|分别为预测结果和真实标签的像素数量。
(2)IOU表示预测结果与真实标签的交集与并集的比

值,值越接近1表示分割效果越好,公式为:

IOU =|X ∩Y|
|X ∪Y|

(12)

(3)精确率衡量模型预测为正类的样本中,真实为正

类的比例,公式为:

Precision=
TP

TP+FP
(13)

其中,TP 表示正确预测为正类的像素数量,FP 表示

错误预测为正类的像素数量。
(4)召回率衡量真实为正类的样本中被正确预测为正

类的比例,反映了模型对正类样本的覆盖能力,公式为:

Recall=
TP

TP+FN
(14)

其中,FN 表示错误预测为负类的像素数量。
通过上述指标的综合评估,可以全面分析模型的分割

性能。Dice系数和IoU侧重于整体相似度,而Precision和

Recall分别从预测准确性和覆盖能力两个角度评估模型的

分割效果。

5)损失函数

本文采用了医学图像分割中最常用的损失函数Dice
 

Loss。Dice
 

Loss在训练过程中更加关注对前景信息的挖

掘,即更加关注骶髂关节区域部分,其定义如式(15)所示。
但是 Dice

 

Loss在小目标的情况下容易出现不稳定的情

况,极端情况下会导致梯度饱和现象。为了缓解这种问

题,本研究还采用了交叉熵损失函数,其公式如式(16)所
示。本文将二者结合起来,定义了骶髂关节分割任务的损

失函数,如式(17)所示,从而指导模型优化与训练。

LDice =1-
2×∑

i

(pi·gi)

∑
i
pi+∑

i
gi

(15)

LCE = -∑
i

[gilog(pi)+(1-gi)·log(1-pi)]

(16)
其中,pi 和gi 分别表示像素i的预测值和标签值,N

为像素点总个数。

L =LDice+LCE (17)
2.2 对比实验

  为了验证 MAG-UNet在骶髂关节分割任务中的性

能,本 文 将 其 与 3D-Unet、3D
 

V-Net[23]、ResUNet[24]、
AttentionUnet、SegNet[25]、

 

UNTER[26]和 Deeplabv3+七

种主流分割模 型 进 行 了 对 比。实 验 结 果 如 表1所 示。

MAG-UNet 在 Dice 系 数 (92.5%)、IoU (86.0%)和

Precision(93.3%)等关键指标上均取得了最优表现,明显

优于其他模型。尽管在Recall指标上与 Attention
 

UNet
接近,MAG-UNet仍保持了更高的分割完整性。此外,

MAG-UNet采用轻量化设计,参数量仅为23.98M,远低

于TransUNet和ResUNet,在保证高精度的同时大幅降低

了计算成本。特别地,在相近参数规模下,MAG-UNet的

Dice系数相比3D
 

U-Net提升了3.4%,展示了其在精度和

效率上的优势。

表1 不同模型的对比结果

Table
 

1 Comparison
 

results
 

of
 

different
 

models
模型 Dice IoU Pre Recall Params/M

3D
 

U-Net 90.482.689.2 92.6 22.45
3D

 

V-Net 89.581.088.5 91.0 54.14
ResUNet 91.083.691.1 91.3 55.92

Attention
 

UNet 91.884.192.0 91.5 118.51
SegNet 88.679.587.5 89.0 76.80
UNTER 87.377.984.6 88.4 106.27

DeepLabv3+ 90.782.991.0 90.6 52.85
Ours(MAG-UNet)92.5 86.093.3 91.3 23.98

2.3 注意力对比试验

  为验证本文提出的DA-Block(融合空间-通道双路径

注意力)机制的有效性,本研究设计了6组对比实验,实验

结果如表2所示。评估不同注意力机制对三维图像分割

性能的影响。实验结果基于常见的评估指标,包括Dice系

数、IoU(交并比)和精确度(Precision)。实验的对比模型

包括标准的3D
 

Unet、带有不同注意力模块的变种模型,以
及本研究提出的DA-Block模块。

从表格中可以看出,应用不同注意力机制后,模型的

性能普遍有所提升。特别是在引入DA-Block后,模型的

Dice系 数、IoU 和 Precision分 别 达 到 了 91.5、84.4和

90.9,相较于标准的3D
 

Unet(Dice为90.4,IoU为82.6,

Precision为89.2),有了明显的提升。通过对比其他注意

力模块,如SE、CBAM和ECA,DA-Block在3个指标上均

展现了较大的优势,证明了其在融合空间和通道信息方面
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  表2 不同注意力对比试验

Table
 

2 Comparison
 

test
 

of
 

different
 

attention
模型 Dice IoU Precision

3D
 

Unet 90.4 82.6 89.2

+SE 90.7 83.0 89.5

+CBAM 91.0 83.2 89.8

+Non_Local 90.6 82.8 89.4

+ECA 88.4 79.6 87.6

+DA_Block 91.5 84.4 90.9

的有效性。

2.4 多尺度卷积核对比试验

  为了探究多尺度卷积核对骶髂关节分割任务的影响,
本研究测试了不同卷积核组合的性能,包括[1×1]、[3×
3]、[5×5]、[1×1,

 

3×3]、[3×3,
 

3×3]、[1×1,
 

3×3,
 

5×
5]和[3×3,

 

5×5,
 

7×7]。实验结果如表3所示,多尺度组合

的表现优于单一卷积核,且[1×1,
 

3×3,
 

5×5]组合在IoU
(83.2%)和参数量(23.14M)方面表现最佳。这表明多尺度卷

积核能有效提高模型对不同尺度特征的感知能力,优化分割

精度,并在性能和计算开销之间达到良好平衡。

表3 不同卷积核大小对比试验

Table
 

3 Comparison
 

test
 

of
 

different
 

convolution
 

kernel
 

sizes

Conv.kernels [1] [3] [5] [1,3] [3,3] [1,3,5] [3,3,3] [3,5,7]

IoU 79.6 82.6 80.2 82.5 81.6 83.2 80.8 81.0
Params 22.42 22.45 22.54 22.48 22.50 23.14 22.58 22.62

2.5 消融实验

  为了验证 MAG-UNet中各模块的贡献,本文进行了消

融实验,逐步引入DA-Block、MFF和LGAG模块,并与基线

模型(3D
 

U-Net)进行对比。实验结果如表4所示,单独引入

DA-Block模块后,IoU从82.6%提升至84.4%,Dice系数从

90.4%提升至91.5%,验证了空间-通道注意力机制的有效

性。引入 MFF模块后,IoU 提升至83.2%,Dice系数为

90.8%,证明了多尺度特征提取的作用。引入LGAG模块

后,IoU为83.0%,Dice系数为90.6%,表明局部-全局信息

融合的优化效果。3个模块联合使用时,IoU达到86.0%,

Dice系数为92.4%,参数量控制在23.98M,充分展示了精

度与计算效率的平衡。实验表明,DA-Block、MFF和LGAG
模块在 MAG-UNet中协同作用,显著提升了模型的分割性

能。图9展示了消融实验可视化对比结果。

表4 消融实验结果

Table
 

4 Ablation
 

experiment
 

results
基线 Da_Block MFF LGAG IoU Dice Precison Params/MB
√ 82.6 90.4 89.2 22.45
√ √ 84.4 91.5 90.9 23.01
√ √ 83.2 90.8 89.5 23.14
√ √ 83.0 90.6 89.4 23.09
√ √ √ 84.8 91.7 91.2 23.45
√ √ √ 84.6 91.6 91.0 23.30
√ √ √ √ 86.0 92.4 93.3 23.98

图9 骶髂关节CT影像分割的消融实验结果对比

Fig.9 Comparison
 

of
 

ablation
 

experimental
 

results
 

of
 

sacroiliac
 

joint
 

CT
 

image
 

segmentation

2.6 可视化结果分析

  为了更直观地展示不同模型在骶髂关节分割中的差

异,本研究对对比实验中选取的各个模型的分割结果进行

了可视化分析。从测试集中随机选取了4例数据(a,
 

b,
 

c,
 

d),具体可视化结果如图10所示。展示了CT图像、专家

标注的GT和各模型的分割结果。结果显示,MAG-UNet
在分割精度上显著优于其他模型,尤其在复杂区域的分割

中表现更强的鲁棒性。例如,MAG-UNet减少了错分和漏

分情况,能够更精准地捕获目标区域,尤其在数据b、c、d中

明显优于其他模型。相比之下,UNETR和SegNet
 

等模型

在目标边界刻画上仍存在较多错分和漏分,难以准确分割

复杂结构。可视化分析验证了 MAG-UNet在细节保留和
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图10 分割结果可视化

Fig.10 Segmentation
 

result
 

visualization

错误抑制方面的优势,展现了其在实际临床应用中的

潜力。

3 结  论

  本文与山西白求恩医院风湿免疫科合作,针对骶髂关

节CT影像分割中自动化程度低、病灶边界模糊、早期微小

病灶检出困难等临床挑战,提出了一种改进的 MAG-UNet
模型。该模型集成了多尺度特征融合(MFF)模块、全局注

意力机制(DA)和局部引导自适应增强(LGAG)模块,通过

多层次特征提取与增强策略,有效解决了复杂解剖结构和

微小病灶的精准识别问题。实验结果表明,MAG-UNet在

Dice系数和IoU等评价指标上优于主流分割方法,验证了

其技术优势。本研究不仅为风湿免疫科和骨科的智能化

辅助诊断提供了一个可靠工具,而且其创新的架构设计也

为脊柱、关节等复杂解剖结构的医学影像分割任务提供了

新的思路和改进方向。特别是在强直性脊柱炎早期诊断

中,MAG-UNet展现出明显的临床应用价值,可为影像学

分析提供更准确的解剖结构分割。未来的研究将重点围

绕以下方向展开:引入自监督学习减少对大规模标注数据

的依赖;优化推理效率以满足临床实时应用需求;结合多

模态影像数据(如 MRI)提升病变识别能力。这些改进将

进一步提升模型的泛化性和临床实用性,推动智能辅助诊

断系统在风湿免疫疾病诊疗中的深入应用。
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