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摘 要:
 

针对复杂语音环境下CAM++模型在特征提取与识别性能方面存在的不足,本文提出了一种融合空洞卷积

与时频多尺度注意力机制的说话人确认模型TF-DCAM。该模型首先利用空洞残差卷积与时频重聚焦机制增强特征

提取能力,提升对冗余信息的抑制效果;其次引入时频多尺度注意力模块,通过通道注意力与跨纬度交互机制提升模

型对关键信息的感知能力;再通过自适应掩码时序卷积模块强化长时依赖建模;最后采用对比损失函数联合优化嵌入

空间结构。实验在CN-Celeb数据集上表明,TF-DCAM 在EER和 minDCF上分别相较基线模型降低了14.98%和

10.98%;在VoxCeleb1上亦展现出良好的跨语种泛化能力。结果证明所提方法在保证轻量化的同时显著提升了说话

人确认性能与鲁棒性。
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Abstract:To
 

address
 

the
 

limitations
 

of
 

the
 

CAM++
 

model
 

in
 

feature
 

extraction
 

and
 

recognition
 

performance
 

under
 

complex
 

acoustic
 

conditions,
 

this
 

paper
 

proposes
 

TF-DCAM,
 

a
 

speaker
 

verification
 

model
 

integrating
 

dilated
 

convolution
 

and
 

temporal-frequency
 

multi-scale
 

attention
 

mechanisms.
 

The
 

model
 

enhances
 

feature
 

representation
 

through
 

dilated
 

residual
 

convolution
 

and
 

a
 

time-frequency
 

adaptive
 

refocusing
 

unit
 

to
 

suppress
 

redundant
 

information.
 

A
 

temporal-frequency
 

multi-scale
 

attention
 

module
 

is
 

introduced
 

to
 

improve
 

sensitivity
 

to
 

key
 

information
 

via
 

channel
 

attention
 

and
 

cross-dimensional
 

interaction.
 

An
 

adaptive
 

masking
 

temporal
 

convolution
 

module
 

is
 

further
 

incorporated
 

to
 

model
 

long-term
 

dependencies
 

effectively.
 

Finally,
 

a
 

combination
 

of
 

contrastive
 

loss
 

functions
 

is
 

applied
 

to
 

jointly
 

optimize
 

the
 

speaker
 

embedding
 

space.
 

Experiments
 

conducted
 

on
 

the
 

CN-Celeb
 

dataset
 

show
 

that
 

TF-DCAM
 

reduces
 

EER
 

and
 

minDCF
 

by
 

14.98%
 

and
 

10.98%
 

respectively,
 

compared
 

with
 

the
 

baseline.
 

The
 

model
 

also
 

demonstrates
 

strong
 

cross-lingual
 

generalization
 

on
 

the
 

VoxCeleb1
 

dataset.
 

Results
 

indicate
 

that
 

the
 

proposed
 

method
 

significantly
 

improves
 

speaker
 

verification
 

performance
 

and
 

robustness
 

while
 

maintaining
 

model
 

efficiency.
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0 引  言

  说话人确认技术旨在判断语音是否来自某个特定说话

人[1],广泛应用于身份验证、生物识别和智能交互等场景。
传统方法通常通过分析语音信号的时域与频域特征进行说

话人识别。近年来,随着深度学习的迅速发展,基于神经网

络的说话人确认模型在准确性和鲁棒性方面取得了显著进

展。主流模型多采用卷积神经网络(convolutional
 

neural
 

networks,CNN)[2]、时 延 神 经 网 络 (time
 

delay
 

neural
 

network,TDNN)[3] 及 残 差 网 络 (residual
 

networks,
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ResNet)[4]等架构,通过多层次特征提取和信息融合,有效

提升了语音嵌入的判别能力。
现有说话人确认系统一般包括声学特征提取器、嵌入

编码器和相似性计算模块[5-6]。特征提取常用梅尔频率倒

谱系数(mel-frequency
 

cepstral
 

coefficient,MFCC)[7]或对

数梅尔滤波器组能量(log-mel
 

filter
 

bank
 

energy,FBank)[8]

等表示语音的时频信息。尽管这些方法在静态条件下有

效,但在复杂环境中存在鲁棒性差、特征利用不足的问题,
难以充分建模语音信号中的结构性信息。

为解决上述问题,深度学习驱动的说话人嵌入模型不

断发展,许多新模型相继提出。其中,密集连接时延神经网

络 (densely
 

connected
 

time
 

delay
 

neural
 

network,D-
TDNN)[9]通过引入密集连接机制,降低计算复杂度并提升

建模能力;ECAPA-TDNN(emphasized
 

channel
 

attention
 

propagation
 

and
 

aggregation
 

in
 

time
 

delay
 

neural
 

network)[10]进一步引入 Res2Net[11]和 通 道 注 意 力 机 制

(squeeze-and-excitation
 

network,SE)[12]在增强时间上下文

与频率建模方面取得显著进展;CAM++在D-TDNN结

构基础上引入上下文感知掩蔽(context-aware
 

masking,

CAM)[13]模块,并通过多粒度池化优化了计算效率与性能

之间的平衡。然而,这些模型在复杂语音条件下仍存在特

征提取不足、计算开销较大的问题。
近年来,多尺度特征融合与时频联合建模逐渐成为提

升语音建模能力的重要方向[14-16]。国外研究者在图像识

别、语音分离和语音识别等任务中广泛应用空洞卷积、金字

塔结构和多尺度注意力机制以增强模型的感受野与特征选

择能力;国内学者则提出将时间与频率维度上的信息融合,
通过多尺度卷积核[17]、频带划分策略、多特征融合[18]等方

法提升语音特征的丰富性与鲁棒性。与此同时,特征重组

机制如通道重聚焦、自适应掩码和动态加权等也被用于去

除冗余信息、突出关键成分,显示出良好的应用前景。然

而,现有方法在多尺度信息建模的系统性、时频注意力融合

的充分性,以及深度时序建模的稳定性方面仍存在一定不

足,难以兼顾识别精度与计算效率。
基于此,本文提出了一种基于时频空洞卷积与自适应

掩码机制模型(temporal-frequency
 

dilated
 

convolution
 

and
 

adaptive
 

masking
 

model,TF-DCAM)。首先,采用空洞卷

积模块(dms-convNet,DMS),利用空洞残差卷积(dilated-
resblock)扩 展 感 受 野,并 结 合 时 频 自 适 应 重 聚 焦 单 元

(time-frequency
 

adaptive
 

refocusing
 

unit,TF-ARU)提升语

音特征提取质量并有效抑制冗余信息;其次,引入时频多尺

度注 意 力 模 块(temporal-frequency
 

multi-scale
 

attention
 

module,TF-MAM),结合通道注意力、时间注意力及跨纬

度交互机制,实现时频信息的高效融合;此外,为优化深度

时序卷积网络,改进时序建模结构,引入自适应掩码时序卷

积模块(adaptive
 

masking
 

temporal
 

convolution,AMTC),
通过多尺度池化与动态加权机制强化对长时依赖的建模;

最后,采用对比损失函数联合优化策略,在主损失函数

AAMLoss的基础上,引入SupConLoss和NT-XentLoss作

为对比损失函数,以提升嵌入空间的判别能力与泛化能力。
实验在CN-Celeb数据集上验证了所提方法的有效性,

所提TF-DCAM 模型等错误率(equal
 

error
 

rate,EER)和
最小代价函数(minimum

 

detection
 

cost
 

function,minDCF)
上分别降低14.98%和10.98%,在提升识别性能的同时保

持较低计算开销。此外,为进一步验证模型在跨语言、跨场

景条件下的泛化能力与鲁棒性,本文还在英文公开测试集
 

VoxCeleb1
 

上进行了迁移评估实验,结果表明所提方法在

不同语言仍保持良好性能,展现出较强的通用性与适应性。

1 模  型

  所提TF-DCAM模型如图1所示,由空洞卷积模块,时
频多尺度注意力模块及主干网络D-TDNN组成,旨在提升

语音嵌入的表达能力。在特征提取阶段,采用空洞卷积模

块进行建模,结合时频重聚焦增强特征选择能力;在注意力

融合阶段,引入时频多尺度注意力模块,自适应优化时间和

频率维度的特征权重,提升模型在复杂环境下的鲁棒性;在
主干网络阶段,构建D-TDNN进行深度时序建模,并通过

统计池化和全连接层生成高判别力的说话人嵌入。

图1 TF-DCAM模型整体结构图

Fig.1 Overall
 

structure
 

diagram
 

of
 

the
 

TF-DCAM
 

model

1.1 空洞卷积模块

  在说话人确认任务中,语音信号往往包含大量冗余信

息。传统卷积神经网络受限于固定感受野,难以兼顾局部

与全局信息。为此,DMS模块结合空洞残差卷积和时频自

适应重聚焦单元进行优化。前者通过不同扩张率的空洞卷

积扩展感受野,高效建模时频依赖;后者参考通道重组策
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略,优化时频特征分布,减少冗余并提升特征表达能力。该

模块为后续的深度时序建模提供高质量特征表示。本文使

用的空洞残差卷积块如图2所示。

图2 空洞卷积残差块

Fig.2 Dilated
 

convolution
 

residual
 

block

空洞卷积通过扩张因子(dilation
 

rate)扩大感受野,在
保持参数量稳定的同时提高建模能力。在DMS模块中,
为增强多尺度建模能力,采用多个具有不同扩张率的空洞

残差卷积(dilated-resblock)进行堆叠,其中单层计算公式

如下:

XL+1 =f(WL*dXL+BL) (1)
其中,XL+1和XL 分别表示第L 层的输入和输出特征,

WL 为卷积核,*d 表示空洞卷积操作,BL 为偏置项,f(·)
代表非线性激活函数。

为了增强特征表达能力,此处选择使用 Mish作为激

活函数,其平滑特性有助于梯度稳定传播,相较于ReLU能

更好地保留负区间信息,以减少特征损失,提高DMS模块

地时频建模能力,其表达式如下:

Mish(x)=x·tanh(ln(1+ex)) (2)

DMS模块采用不同扩张率的空洞卷积进行计算,并通

过堆叠多个空洞残差块构建时频感受野金字塔结构,以捕

获不同尺度的时频依赖信息:

d∈ {1,2,4,8} (3)
这种策略既能提取短时局特征,又能建模长期依赖,在

适度提升计算复杂度的前提下提高模型在说话人确认任务

中的鲁棒性。
传统卷积神经网络在处理语音数据时,通道信息往往

存在冗余,影响特征表达的准确。借鉴计算机视觉领域的

通道重组策略,DMS模块引入时频自适应重聚焦单元(TF-
ARU),以减少时频特征中的冗余信息,并增强关键特征的

表达能 力。TF-ARU 主 要 由 时 频 动 态 门 控 单 元(time-

frequency
 

gating
 

unit,TFGU)和 多 尺 度 频 带 重 建 单 元

(band
 

reconstructing
 

unit,BRU)组成,分别负责动态调整

信息流和频带特征的优化重构,有效地优化了时频信息的

选择和组织方式,提高了语音嵌入的质量及声纹特征的区

分能力,TF-ARU结构如图3所示。

图3 TF-ARU结构图

Fig.3 Structure
 

diagram
 

of
 

TF-ARU

TFGU采用“分离-重建”策略,通过动态门控机制筛选

输入特征,增强关键信息并抑制冗余,其主要流程如下:
 

对输入特征组归一化,使不同通道的特征分布更加

稳定:
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XGN =
X-μ
ε

(4)

其中,X 为输入特征;μ,ε分别为均值和标准差。
归一化后的特征通过softmax和sigmoid计算权重,生

成门控掩码:

M =σ(Softmax(XGN)) (5)
其中,σ表示sigmoid函数。
根据设定阈值(本文设定为0.5),将特征划分为信息

保留部分Xinf和冗余部分Xnoninf:

Xinf=M☉X,Xnoninf= (1-M)☉X (6)
其中,☉ 代表逐点乘法(element-wise

 

multiplication)。
筛选后对信息保留部分和冗余部分进行交叉重构,对

数据进行部分交换:

X1=Concat(Xinf[:L/2,/:],Xnoninf[L/x:L,:]) (7)

X2=Concat(Xnoninf[:L/2,/:],Xinf[L/x:L,:]) (8)
交换后的特征拼接得到TFGU的输出:

XTFGU =Concat(X1,X2) (9)
经过TFGU处理后的特征XTFGU 作为多尺度频带重建

单元(BRU)的输入进行后续处理,如图3(b)所示。
多尺度频带重建单元(BRU)通过带通分割对输入特

征进行划分,以增强模型对关键语音特征的感知能力,其主

要流程如下:
带通分割将输入特征XTFGU 分为两条不同频带路径,

以增强不同频带信息的建模能力:

Xα =α·XTFGU,X1-α = (1-α)·XTFGU (10)
其中,α是可学习参数(初始化为0.5),Xα 侧重高能量

频带特征,X1-α 侧重低能量频带信息。
高能量频带路径上,通过1×1卷积进行线性映射,结

合分组卷积(GWC)和逐点卷积(PWC)分别进行特征分组

处理和全局通道建模,再将两部分特征融合:

Xhigh=Xα☉σ(GWC(Xα)+PWC(Xα)) (11)
低能量频带路径仅使用1×1卷积和逐点卷积进行

优化:

Xlow =PWC(X1-α) (12)
将两路径输出进行拼接,通过sigmoid计算最终权重,

对输入特征进行重加权,得到最终输出:

Xout=XTFGU☉σ(Concat(Xhigh,Xlow)) (13)
该模块在提升模型性能的同时控制计算开销,生成优

化后的特征表示,输入至TF-MAM模块进行进一步处理。

1.2 时频多尺度注意力模块

  时频多尺度注意力模块(temporal-frequency
 

multi-
scale

 

attention
 

module,TF-MAM)是TF-DCAM说话人确

认模型中的核心组件之一,旨在优化时频特征表达,提高模

型的鲁棒性和准确性。该模块结合时间注意力机制、通道

注意力机制和跨纬度交互(cross-dimensional
 

interaction,
 

CDI)机制,在时域和频域上动态调整特征权重,以实现更

高效的时频特征融合和信息表达。

TF-MAM采用双支路结构,如图4所示。左支路侧重

全局信息,右支侧重局部信息提取,最终输出将两条支路特

征通过加权融合形成综合的特征表示,为说话人确认任务

提供更加精确的语音特征。

图4 TF-MAM结构图

Fig.4 Structure
 

diagram
 

of
 

TF-MAM

左支路通过全局平均池化(global
 

average
 

pooling,

GAP)提取时间和频率维度的全局特征,并通过sigmoid计

算通道注意力权重,得到每个通道的权重系数AC,计算过

程如下:

AC=σ(W1(
1
L∑

L

i=1
Xi)) (14)

其中,W1 是一个可训练的权重矩阵。
计算所得权重用于重加权输入特征,得到增强后的全

局信息特征XC:

XC=AC☉X (15)
右支路通过在时间维度上执行1×3卷积聚合局部时

间窗口信息,得到局部表示XS:

XS=Conv1×3(X) (16)
为了获得更丰富的特征表达,提出一种不同时间感受

野的跨时间聚合算法,对获得的全局表示和局部表示进行

信息编码,左支路的全局信息与右支路的局部信息分别通

过Softmax归一化生成通道描述符,并交叉作用,以实现多

尺度信息融合:

A1=Softmax(GAP(XC)) (17)
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A2=Softmax(GAP(XS)) (18)

Xatt=A1☉XS+A2☉XC (19)
通过Sigmoid门控函数计算最终加权系数,并对输入

特征进行校准:

XTF-MAM =σ(Xatt)☉X (20)
该模块在全局和局部特征之间建立动态联系,使模型

能够更有效地捕捉语音信号的关键时频信息,从而提升说

话人确认任务的表现。

1.3 深度时序卷积网络

  深度时序卷积网络(D-TDNN)作为TF-DCAM的主干

部分,采用多层膨胀卷积以建模语音的时序结构,相比传统

TDNN,D-TDNN通过扩展感受野增强了对长时依赖的建

模能力,在保证计算效率的前提下更有效地捕捉语音序列

的动态变化。为增强对时序信息的调控能力同时提升通道

信息的自适应性,本文在单层卷积模块中采用了改进的自

适 应 掩 码 时 序 卷 积 (adaptive
 

masking
 

temporal
 

convolution,AMTC),该模块融合多尺度时序上下文,通过

动态加权机制增强关键时间区域的表示能力,提高语音嵌

入的判别性和鲁棒性,其结构如图5所示。

图5 单一时序卷积层结构

Fig.5 Single
 

temporal
 

convolutional
 

layer
 

structure

单一时序卷积层过程如下:
对输入特征X 先经过两次非线性变换与1×1卷积,以

增强特征的非线性表达能力并调整通道维度:

XNL2=F2(Conv1×1(F1(X))) (21)
其中,F1(·)和F2(·)分别表示两次非线性变换。
随后,通过膨胀卷积提取长时间依赖特征,接着引入多

尺度池化策略,分别通过全局平均池化和分段池化提取不

同时间尺度的信息,随后分别经过降维操作降低复杂度和

Mish激活函数进行增强:

XT =Conv1d(XNL2) (22)

AG = Mish(PWC(GAP(XT))) (23)
AS= Mish(PWC(SegPool(XT))) (24)

其中,GAP提取全局时间尺度的信息,SegPool通过

对时间轴划分不同区段并计算平均值,更关注局部时间

特征。
为自适应融合不同尺度的信息,引入可学习自适应系

数α(初始值为0.5)进行权重调节:

Afused=αAG+(1-α)AS (25)
融合后的注意力分数先升维还原,再通过Sigmoid激

活,生成上下文掩码权重:

AAMTC=σ(PWC(Afused)) (26)
将该掩码作用于输入特征,完成加权:

XOUT =AAMTC☉X (27)
多个上述卷积层堆叠构成D-TDNN,每层通过膨胀卷

积学习不同粒度的时间信息,逐层提取更高层次的特征表

示。假设网络的第L 层卷积层的输出为XL,那么该层卷

积操作可简化表示为:

XL =ConvL(XL-1) (28)
为了增强特征流动和信息复用,D-TDNN采用密集连

接(dense
 

connection)机制,将每一层的输出会与之前层的

信息进行拼接:

XL =Concat(XL-1,ConvL(XL-1)) (29)
密集连接不仅保留了低层细节特征,也提升了梯度传

播效率,增强训练稳定性。在经过一个密集连接块后,网络

会接入过渡层(transit
 

layer)进行通道数调整,确保不同特

征通道的适应性,同时还会用于批归一化和非线性激活函

数,增强模型的稳定性和非线性表达能力:

XBN =
XL-μ
σ2+ε

·γ+β (30)

其中,μ 和σ2分别表示批次特征的均值和方差;γ和β
为可训练的缩放和偏移参数,ε为防止除零错误的小常数。

D-TDNN结构通过层层堆叠与特征融合,有效建模多层

次的时间依赖信息,为最终嵌入表示提供丰富的时序基础。

1.4 对比损失函数

  在说话人确认任务中,损失函数的选择直接决定了嵌

入空间的分布形式,从而影响模型的区分能力和泛化能力。
原模 型 使 用 的 损 失 函 数 为 AAMLoss(additive

 

angular
 

margin
 

loss),是一种改进型的Softmax损失函数,旨在通

过在角度空间引入附加间隔,提高类间可分性和类内聚合

性,其损失形式如下:

LAAM = -
1
N∑

N

i=1
log

e
S(cos(θYi

)-m)

e
S(cos(θYi

)-m)

+∑
j≠yi

e
Scos(θj

)
(31)

其中,θ为缩放因子,用于扩大角度分布;m 为角度间

隔,用于提高不同类之间的分离度;θyi
表示第i个样本与

其真实类别中心之间的角度,N 为批次大小。
虽然AAMLoss在增强说话人类间间隔、提高判别能

力方面表现优越,但仍然存在不足之处,首先AAMLoss主

要依赖单个类别中心的角度信息进行优化,局限于单点决
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策,仅考虑类别中心和样本之间的距离,未充分利用样本间

的信息结构;其次,AAMLoss不能直接优化同类别内部的

样本结构,容易出现类内分布不均匀的问题。基于上述

AAMLoss的局限性,本文引入两种对比损失函数,用于进

一步优化嵌入空间[19-20]。

1)SupConLoss
SupConLoss(supervised

 

contrastive
 

loss)引入标签监

督,鼓励同类样本在嵌入空间中聚集,增强类内一致性,其
形式如下:

LSC=∑
N

i=1

-1
|P(i)|∑p∈P(i)

log
exp(zi·zp/τ)

∑
a∈A(i)
exp(zi·za/τ)

(32)

其中,P(i)表示与样本i同类的正样本集合,A(i)为
当前批次所有样本集合,zi 为样本i在嵌入空间中的特征

表示,τ 为温度系数,用于调整样本间的对比度,通常设

为0.07。
相比于AAMLoss仅考虑类别中心,SupConLoss还强

调了同一类别样本之间的聚合度,优化了嵌入空间的类内

分布,提高对边界样本的适应能力。

2)NT-XentLoss
NT-XentLoss(normalized

 

temperature-scaled
 

cross
 

entropy
 

loss)是一种无监督对比学习损失,在本文中用于

增强类间分离,其表达形式为:

LNT = -∑
N

i=1
log

exp(sim(zi,zj)/η)

∑
2N

k=1
1[k≠i]exp(sim(zi,zk)/η)

(33)

其中,sim(zi,zj)代表样本i和j之间的相似度,一般

用余弦相似度计算;η为温度参数,通常设为0.5;1[k≠i]指

排除自身样本的负样本对。

NT-XentLoss通过拉远不同类别样本间距离,以优化

类间边界,使不同类别的样本更加分离;且由于它计算的是

样本两两之间的相似度,因此不会受到单一类别重心偏移

的影响,能够更加灵活地优化嵌入空间结构。

3)多损失函数融合

本文 最 终 采 用 AAMLoss作 为 主 损 失 函 数,引 入

SupConLoss和NT-XentLoss作为对比损失函数进行联合

训练,总损失函数表达式如下:

L =LAAM+λ1LSC+λ2LNT (34)
其中,λ1与λ2分别为SupConLoss和NT-XentLoss的

权重。
在实验过程中,对两种对比损失函数的权重进行多次

调试和自适应优化权重,发现当λ1+λ2 时,可以在不引起

参数膨胀的情况下达到模型分类的最佳效果,在提升模型

表达能力的同时,兼顾了稳定性和计算效率。

2 实验结果与性能分析

2.1 数据集

  在本次实验中,为验证所提TF-DCAM 说话人确认模

型的有效性,选用公开数据集CN-Celeb作为实验数据来

源。CN-Celeb数据集是目前最大的中文开源说话人识别

数据集之一,由CN-Celeb1和CN-Celeb2两部分组成,其中

CN-Celeb1包含约1
 

000名说话人的语音样本,CN-Celeb2
为其扩展版本,新增约2

 

000名说话人,总计约3
 

000名说

话人、650
 

000条语音,总时长超过800
 

h。所有音频均为单

通道录音,采样率为16
 

kHz,位深为16
 

bit,涵盖了多种真

实环境下的语音场景,具有良好的多样性和泛化能力。实

验中将CN-Celeb1与CN-Celeb2整体作为训练集,测试集

使用CN-Celeb官方提供的预设测试集,包含200名说话

人、约18
 

000组验证对,用于评估模型在中文复杂环境中

的说话人识别性能。
此外,为进一步验证所提模型的跨语种泛化能力与鲁

棒性,本文在英文公开数据集VoxCeleb1上进行额外测试。

VoxCeleb1是由牛津大学Deep
 

Learning组发布的国际主

流说话人识别数据集,包含1
 

251名不同说话人、超过

15万段语音片段,全部来源于YouTube视频,涵盖多种语

言、口音和背景噪声环境,具有高度真实场景复杂性。本文

采用VoxCeleb1标准测试划分,作为跨语种验证集,以评估

TF-DCAM在非中文语料下的表现,进一步验证其语种适

应性和实际应用潜力。
为提升模型在真实环境中的鲁棒性和泛化能力,在训

练过程中采用以下数据预处理和增强策略:

1)音量归一化:将音频统一归一化至-20
 

dB,降低录

音设备差异对模型训练的干扰;

2)音频裁剪:过滤小于0.3
 

s的短音频,截断超过3
 

s
的长音频,保证训练语音片段的稳定性;

3)批量采样策略:默认采用随机采样方式提升样本多

样性,同时支持
 

PK-Sampler,确保说话人类别均衡,有利于

训练收敛和泛化性能提升。

2.2 实验设置

  本文所用实验环境:处理器为Intel
 

Core
 

i5-12600KF
(3.7

 

GHz),GPU 为 GeForce
 

RTX
 

4060Ti,操作系统为

Windows11,Pytorch 版 本 为 2.3.0,Python 版 本 为

3.10.14,CUDA版本为11.8。
在本次实验中,对于模型的设置如下:音频采样率固定为

16
 

kHz,batch_size设置为64,优化方法采用Adam,初始学习

率设为0.001,学习率衰减由 WarmupCosineSchedulerLR进行

管理,预热周期设置为5轮,最大学习率设为0.001,最小

学习率为1×10-5,对比损失权重设定为0.01,实验采用60
轮训练,保存效果最佳的模型。

2.3 评价指标

  在说话人确认任务中,主要采用等错误率(equal
 

error
 

rate,EER)和最小检测代价函数(minimum
 

detection
 

cost
 

function,minDCF)作为核心性能评价指标,其中EER表示

假接受率和假拒率相等时的错误率,取值范围为[0,1],其
数值越低,表示模型区分不同说话人的能力越强;minDCF
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通过引入错误检测代价评估模型在不同应用场景下的决策

表现,数值越低代表模型在复杂环境下具有更强的鲁棒性。
此外,为更全面地衡量模型性能,本文还引入了以下3项补

充指标:参数量(Params)反映模型结构的复杂度;浮点运

算量(FLOPs)衡量模型在推理阶段的计算成本;实时因子

(real-time
 

factor,RTF)衡量模型在实际部署中的推理速

度,越低代表实时性越好。

2.4 对比损失函数权重优化实验

  为进一步优化嵌入空间结构,提升说话人类内聚合度

与类间区分度,本文在主损失函数AAMLoss的基础上,引
入SupConLoss和NT-XentLoss两种对比损失函数进行联

合训练。由于对比损失的权重对模型收敛性和最终性能影

响显著,本文设计了一组权重组合实验,评估其对识别性能

(EER和minDCF)的影响。
实验结果如表1所示,可以观察到:1)当总权重设为

0.005(两种损失各0.002
 

5)时,模型性能相较基线明显提

升,表明对比损失有助于优化特征空间结构;2)将总权重进

一步提升至0.01后,EER 降至14.72%,minDCF
 

降至

0.672
 

9,达到最佳性能,说明适当增加对比信号可增强判

别能力;3)当权重增至0.015后,性能略有下降,表明过强

的对比约束可能破坏主损失的优化目标,导致嵌入结构失

衡;4)当权重达到0.02时,训练出现梯度爆炸现象,推测是

因对比损失占比过高削弱了AAMLoss对类别边界的有效

约束,致 使 训 练 过 程 失 控。综 上 考 虑,本 文 最 终 选 择

SupConLoss与NT-XentLoss权重各设为0.005,在保证最

优性能的同时,兼顾训练稳定性与收敛效率。

表1 在CN-Celeb数据集上的对比损失函数权重优化实验

Table
 

1 Experiment
 

on
 

the
 

optimization
 

of
 

the
 

weight
 

of
 

the
 

contrastive
 

loss
 

function
 

on
 

the
 

CN-Celeb
 

dataset

模型 SupConLoss权重 NT-XentLoss权重 对比损失总权重 EER/% MinDCF

CAM++ 0 0 0 15.55 0.715
 

8

CAM++ 0.002
 

5 0.002
 

5 0.005 14.91 0.690
 

3

CAM++ 0.005
 

0 0.005
 

0 0.010 14.72 0.672
 

9

CAM++ 0.007
 

5 0.007
 

5 0.015 15.03 0.688
 

5

CAM++ 0.010
 

0 0.010
 

0 0.020 - -

TF-DCAM 0 0 0 13.88 0.659
 

0

TF-DCAM 0.002
 

5 0.002
 

5 0.005 13.46 0.640
 

9

TF-DCAM 0.005
 

0 0.005
 

0 0.010 13.22 0.637
 

2

TF-DCAM 0.007
 

5 0.007
 

5 0.015 13.65 0.648
 

1

2.5 CN-Celeb数据集实验对比

  为全面评估所提TF-DCAM模型的性能,本文在
 

CN-
Celeb

 

数据集上与近年来具有代表性的说话人确认模型进

行了 对 比 实 验,选 取 的 对 比 模 型 包 括 ResNet34、

ERes2Net、ECAPA-TDNN和CAM++,在相同的预处理

流程和训练设置下,使用等错误率(EER)与最小检测代价

函数(minDCF)作为主要评价指标。
实验结果如表2所示,从实验结果可以 看 出,TF-

DCAM在EER和minDCF两项指标上均优于其他模型,
体现出更强的判别能力与鲁棒性。具体分析如下:1)与

ResNet34和ERes2Net相比,TF-DCAM 通过引入空洞卷

积与自适应掩码时序卷积,提升了长时依赖建模能力,使
嵌入特征更加紧凑,EER

 

和
 

minDCF
 

显著下降,在保持计

算效率的同时有效提升了识别性能。2)与ECAPA-TDNN
和CAM++相比,尽管三者均基于TDNN框架构建,TF-
DCAM进一步引入多尺度注意力机制与对比损失联合优

化,EER分别下降3.83%和2.09%,minDCF
 

分别降低

0.118
 

1和0.078
 

6,验证了本模型在保持轻量化的同时具

备更强的特征表达能力和泛化性能。

表2 各模型在CN-Celeb数据集的对比实验

Table
 

2 Comparative
 

experiments
 

of
 

each
 

model
 

on
 

the
 

CN-Celeb
 

dataset

模型 Params/M EER/% minDCF
ResNet34 6.7 15.99 0.721

 

2
ERes2Net 6.6 15.18 0.669

 

4
ECAPA-TDNN 14.7 17.29 0.755

 

3
CAM++ 7.2 15.55 0.715

 

8
TF-DCAM 7.6 13.22 0.637

 

2

2.6 VoxCeleb1验证集实验对比

  为进一步验证所提模型在跨语种与复杂环境条件下

的泛化能力与鲁棒性,本文在VoxCeleb1测试集上进行了

跨数据集验证实验。所有模型均仅使用中文语料 CN-
Celeb数据集进行训练,不引入 VoxCeleb1中的任何训练

样本,以保证测试结果的客观性与泛化评估的真实性。测

试阶段采用 VoxCeleb1官方划分的验证集,并沿用 CN-
Celeb实验中相同的评估指标———等错误率(equal

 

error
 

rate,EER)和最小检测代价函数(minimum
 

detection
 

cost
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function,minDCF)。实验选取与2.5节相同的代表性模型

进行对比,包括ResNet34、ECAPA-TDNN、CAM++和本

文所提TF-DCAM 模型。所有模型在相同训练设置与推

理流程下进行测试,验证阶段统一使用余弦相似度打分和

固定阈值判决机制。
实验结果如表3所示,从表中结果可以 看 出,TF-

DCAM在VoxCeleb1上取得了显著优于其他模型的性能

表现EER为14.55%,minDCF
 

为0.891
 

3,在所有对比模

型中均为最低,展现出优异的跨语种泛化能力。具体分析

如下:1)对比轻量CNN架构(ResNet34、ERes2Net):两者

在跨 语 言 场 景 中 表 现 受 限,EER 分 别 为 16.95% 和

16.85%,minDCF超过0.90,说明浅层特征提取器在语种

转移中 难 以 捕 捉 稳 定 的 说 话 人 特 征。相 比 之 下,TF-
DCAM在EER上降低2.4%和2.3%,表明本文模型通过

引入空洞卷积与深度特征融合,有效增强了对发音风格变

化与背 景 噪 声 的 适 应 能 力。2)对 比 主 流 TDNN 架 构

(ECAPA-TDNN、CAM++):虽然这两种方法具备一定

的上下文建模能力,但由于未引入多尺度调控和深度重聚

焦机制,在语种和语境发生变化时,模型的特征表征稳定

性 下 降。TF-DCAM 相 比 ECAPA-TDNN,EER 降 低

1.86%,minDCF降低0.051
 

2,表现出更强的抗干扰与判

别能力。简而言之,TF-DCAM在保持轻量化的前提下,展
现出显著优于其他模型的跨语言鲁棒性与特征判别能力。

2.7 消融实验

  为验证各个改进模块在TF-DCAM模型中的有效性,
本文设计了消融实验,分别在Baseline模型上逐步引入关

键组件,包括:空洞卷积模块(DMS)、时频多尺度注意力模

  

表3 各模型在VoxCeleb1验证集上的对比实验

Table
 

3 Comparative
 

experiments
 

of
 

each
 

model
 

on
 

the
 

VoxCeleb1
 

validation
 

set

模型 Params/M EER/% minDCF

ResNet34 6.7 16.95 0.923
 

1

ERes2Net 6.6 16.85 0.903
 

7

ECAPA-TDNN 14.7 16.41 0.942
 

5

CAM++ 7.2 16.36 0.930
 

6

TF-DCAM 7.6 14.55 0.891
 

3

块(TF-MAM)、自适应掩码时序卷积(AMTC)以及对比损

失函数,实验在CN-Celeb数据集上进行,评估指标为EER
和minDCF。

实验结果如表4所示,结果表明:1)在原始模型中引

入DMS模块后,EER和minDCF降至14.91%和0.689
 

2,
说明空洞卷积有助于提升特征提取的全局感受野,增强时

频依赖建模能力;2)在此基础上加入TF-MAM 模块,EER
进一步下降至14.25%,表明该模块能有效融合时频特征,
提升模型对多维信息的表达能力;3)继续引入 AMTC模

块后,EER和 minDCF降至13.88%和0.659
 

0,表明该模

块优化了时序建模过程,增强了特征的上下文鲁棒性;4)
最终加入对比损失函数,模型性能进一步提升,EER降至

13.22%,minDCF降至0.637
 

2,验证了多任务监督优化对

嵌入空间判别性的显著促进作用。综上,消融实验证明了

本文提出的各个模块均能有效提升模型性能,且组合使用

时具备良好的协同增益效果。

表4 在CN-Celeb数据集上的消融实验

Table
 

4 Ablation
 

experiments
 

on
 

the
 

CN-Celeb
 

dataset

模型
空洞卷积

模块(DMS)
时频多尺度注意力

(TF-MAM)
自适应掩码时序

卷积(AMTC)
对比损失

函数
EER/% minDCF

Baseline × × × × 15.55 0.715
 

8
+DMS √ × × × 14.91 0.689

 

2
+TF-MAM √ √ × × 14.25 0.663

 

8
+AMTC √ √ √ × 13.88 0.659

 

0
+对比损失 √ √ √ √ 13.22 0.637

 

2

2.8 学习率敏感性分析

  在深度神经网络模型训练过程中,初始学习率的设置

对模型的收敛速度与最终性能具有关键影响。尽管文献

中普遍建议将初始学习率设定在0.1~0.001之间,且
0.01被广泛认为是兼顾收敛速度与稳定性的常用值,但在

本研究所涉及的任务与网络结构中,该设置未能取得预期

效果。具体而言,当初始学习率设定为0.01时,模型在训

练初期出现较大的梯度波动,导致损失函数异常增长,甚
至引发数值不稳定,进而触发程序的自动中止机制。为

此,本文将初始学习率下调至0.001,以增强训练过程的数

值稳定性。该设置不仅有效缓解了训练初期的震荡问题,
避免了程序非正常终止的现象,也为模型提供了更平稳的

优化路径。实验结果表明,在初始学习率为0.001的条件

下,模型能够顺利完成训练,并在验证指标上取得更优表

现,验证了该设定的合理性与实用性。
同时为了选择最佳的最终学习率,对最终学习率进行

敏感性训练分析。根据已有工作中对学习率设置的范围,
通常学习率被控制在1×10-4~2×10-3 之间,以实现较平
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滑的收敛曲线和稳定的优化路径。使用本文模型在CN-
Celeb数据集上,参考上述范围,设计五组不同的最终学习

率方案,为0.000
 

1、0.000
 

5、0.001、0.001
 

5、0.002,在保持

其他超参数不变的条件下,每组均进行60轮训练,并以验

证集上的EER作为性能评估指标。
实验结果如图6所示,不同学习率设置下模型性能呈

现出一定的差异性,通过验证结果可知,随着学习轮数增

加,不同学习率下的模型验证指标EER都会向着一个极

小值靠近,当选择最终学习率为0.001时,验证指标EER
达到最小,说明本文算法选择最终学习率为0.001时能过

够生产性能最佳的模型。因此选择初始学习率为0.001,
最终学习率为0.001作为实验训练指标。

图6 不同最终学习率下模型性能变化

Fig.6 The
 

variation
 

of
 

model
 

performance
 

under
 

different
 

final
 

learning
 

rates

2.9 复杂性分析

  为评估TF-DCAM模型在计算资源上的开销,本文将

其与ECAPA-TDNN、ResNet34及CAM++三种主流模

型进行复杂度对比,评估指标包括参数量(Params)、浮点

运算次数(FLOPs)和实时因子(RTF)。所有模型均在单

线程CPU环境下评估推理速度,实验结果如表5所示。结

果表明:1)相比ECAPA-TDNN,TF-DCAM参数量减少约

48.1%,FLOPs降低53.3%,RTF降至0.014,推理速度提

升超过57%,在显著降低计算复杂度的同时保持优秀的识

别性能;2)相比ResNet34,TF-DCAM的FLOPs仅为其约

27.1%,RTF略低,显示出更高的计算效率,而 ResNet34
受较高参数依赖影响,可能存在较大的内存访问开销,导
致推理速度受限;3)相比CAM++,TF-DCAM 参数略有

增加,FLOPs增加轻微,但仍远低于其他两种主流模型,表

  
表5 各模型复杂度对比实验

Table
 

5 Experiment
 

on
 

the
 

comparison
 

of
 

the
 

complexity
 

of
 

each
 

model

模型 Params/M FLOPs/G RTF
ECAPA-TDNN 14.7 3.96 0.033
ResNet34 6.7 6.84 0.032
CAM++ 7.2 1.72 0.013
TF-DCAM 7.6 1.85 0.014

明在保持轻量级特性的同时,进一步提升了建模能力和性能

表现。综合来看,TF-DCAM在模型规模、计算量和实时性之

间实现了良好平衡,更适用于资源有限的实际应用场景。

3 结  论

  本文提出了一种基于时频多尺度建模与特征重组机

制的说话人确认模型
 

TF-DCAM,针对复杂语音环境下语

音特征冗余、建模能力不足等问题进行了系统优化。首

先,空洞卷积模块(DMS)利用多尺度空洞残差结构与时频

重聚焦机制,有效增强了特征建模能力;其次,时频多尺度

注意力模块(TF-MAM)结合通道注意力与跨维度交互,提
升了模型对关键信息的感知能力;再次,自适应掩码时序

卷积模块(AMTC)通过多尺度池化与上下文门控机制优

化了 时 序 特 征 表 达;最 后,引 入 SupConLoss 与 NT-
XentLoss对比损失,实现嵌入空间的结构优化。在

 

CN-
Celeb

 

数据集和
 

VoxCeleb1
 

验证集上的实验验证表明,所
提

 

TF-DCAM
 

模型在
 

EER
 

和
 

minDCF
 

两项指标上均优于

多种主流对比模型,在提升识别性能的同时保持了较低的

计算开销,展示出良好的跨语言鲁棒性与实际部署潜力。
未来工作将进一步探索更高效的时频多尺度融合机制,并
在更具挑战性的跨语言、跨信道和真实应用场景中,持续

验证和提升模型的泛化能力与应用价值。
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