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摘 要:针对现有的多变量长时间序列预测模型在光伏发电功率中长期预测中存在特征提取不足导致预测结果较差的

问题,提出了一种基于频域和时域学习的多变量长时间序列预测模型FFTEMixer,该模型能准确预测光伏发电功率的同

时能保持较高的运行效率。该模型首先利用快速傅里叶变换将时序数据投影至频域,通过可学习的频率滤波器选择性

增强或抑制特定频率分量,以提取全局特征和变量间相关性特征,紧接着再通过一个交互式卷积模块学习局部依赖关

系,进一步提高特征表达能力;然后,通过特征融合器进一步整合周期性特征,并建立特征变量与时间戳协变量的关联;
最后,采用多头自注意力机制全面建模序列的长期依赖性和时间依赖性,从而实现对时序数据的全面的特征提取。实验

结果表明,在两个公开光伏发电数据集上,该模型的预测性能显著优于基准模型,均方误差和平均绝对误差始终为最低

值。与当前主流次优模型相比,其均方误差和平均绝对误差分别降低了12.6%和15.8%,验证了模型的有效性。
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Abstract:Aiming
 

at
 

the
 

existing
 

multivariate
 

long
 

time
 

series
 

prediction
 

model
 

in
 

the
 

medium
 

and
 

long
 

term
 

prediction
 

of
 

photovoltaic
 

(PV)
 

power,
 

which
 

has
 

the
 

problem
 

of
 

poor
 

prediction
 

results
 

due
 

to
 

insufficient
 

feature
 

extraction,
 

a
 

multivariate
 

long
 

time
 

series
 

prediction
 

model
 

FFTEMixer
 

based
 

on
 

learning
 

in
 

both
 

frequency
 

and
 

time
 

domains
 

is
 

proposed,
 

which
 

is
 

capable
 

of
 

accurately
 

predicting
 

the
 

PV
 

power
 

while
 

maintaining
 

a
 

high
 

operational
 

efficiency.
 

The
 

model
 

first
 

uses
 

the
 

fast
 

Fourier
 

transform
 

to
 

project
 

time-series
 

data
 

into
 

the
 

frequency
 

domain.
 

It
 

then
 

selectively
 

enhances
 

or
 

suppresses
 

specific
 

frequency
 

components
 

through
 

learnable
 

frequency
 

filters
 

to
 

extract
 

global
 

features
 

and
 

inter-variable
 

correlation
 

features.
 

Next,
 

an
 

interactive
 

convolution
 

module
 

is
 

used
 

to
 

learn
 

local
 

dependencies,
 

further
 

enhancing
 

feature
 

expression
 

capabilities.
 

Subsequently,
 

a
 

feature
 

fusion
 

module
 

is
 

employed
 

to
 

further
 

integrate
 

periodic
 

features,
 

and
 

establishes
 

associations
 

between
 

feature
 

variables
 

and
 

time
 

stamp
 

covariates.
 

Finally,
 

a
 

multi-
head

 

self-attention
 

mechanism
 

is
 

employed
 

to
 

comprehensively
 

model
 

the
 

long-term
 

dependencies
 

and
 

temporal
 

dependencies
 

of
 

the
 

sequence,
 

thereby
 

achieving
 

comprehensive
 

feature
 

extraction
 

from
 

time-series
 

data.
 

Experimental
 

results
 

show
 

that
 

on
 

two
 

publicly
 

available
 

photovoltaic
 

power
 

generation
 

datasets,
 

the
 

model's
 

predictive
 

performance
 

significantly
 

outperforms
 

the
 

baseline
 

model,
 

with
 

mean
 

squared
 

error
 

(MSE)
 

and
 

mean
 

absolute
 

error
 

(MAE)
 

consistently
 

achieving
 

the
 

lowest
 

values.
 

Compared
 

to
 

the
 

current
 

mainstream
 

second-best
 

model,
 

its
 

MSE
 

and
 

MAE
 

are
 

reduced
 

by
 

12.6%
 

and
 

15.8%,
 

respectively,
 

validating
 

the
 

model's
 

effectiveness.
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0 引  言

  随着全球能源需求的不断增长和环境保护意识的增

强,可再生能源的开发和利用已经成为世界各国关注的焦

点,并且在未来的发展中可再生能源将成为能源体系的重

要组成部分。在众多可再生能源中,光伏发电因其清洁、可
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再生、无污染、采集方便和成本低等优点,得到了广泛的应

用和快速发展,并且已成为电力行业不可或缺的重要组成

部分[1]。随着光伏发电装机容量占比的不断提升以及光伏

发电功率受到天气、季节、时间等多种因素影响导致电力输

出断断续续、波动不定,这给光伏发电并入电网以及电网调

度和管理带来了巨大的挑战[2-3]。因此,准确的光伏发电功

率预测特别是中长期预测对降低光伏发电对电网产生的负

面影响以及为光伏并网决策提供依据具有极为重要的实际

意义[4]。
常见用于光伏发电功率预测方法主要有物理模型方

法、统计学方法和机器学习方法[5]。然而物理模型方法和

统计学方法对非线性和非平稳时间序列数据建模的能力有

限[6]。因此,现在主流的光伏发电功率预测是使用机器学

习方法。如文献[7]提出的XGBoost-LSTM 组合模型通过

误差倒数法加权融合两种算法的预测结果,显著提高了短

期光伏发电功率的预测精度。文献[8]提出了一种基于气

候特征分析及改进XGBoost算法,通过划分气候预测数据

为多个 子 模 型,结 合 特 征 工 程 和 超 参 数 优 化,提 升 了

XGBoost模型在中长期光伏发电量预测中的精度。尽管上

述方法在光伏发电功率预测中取得了一定的优势,但机器

学习方法仍存在一些问题,包括对数据的高度依赖、特征选

择的复杂性、计算成本较高以及难以完全捕捉复杂的非线

性关系等。
近年来,深度学习方法因其强大的特征提取能力和非

线性映射能力,在时间序列预测领域展现出巨大的优势和

潜力,吸引了学术界和工业界的广泛关注,并被广泛应用于

光伏发电功率预测,这些模型大体可以分为两类[9-10]。一

类是基于循环神经网络(recurrent
 

neural
 

network,
 

RNN)
结构的模 型,主 要 有 长 短 期 记 忆 网 络(long

 

short
 

term
 

memory,
 

LSTM)[11]和 门 控 循 环 单 元 (gated
 

recurrent
 

unit,
 

GRU)[12]。例如,文 献[13]通 过 引 入 灰 狼 算 法 对

GRU模型进行超参数优化,用以提升光伏发电功率预测的

精准度。文献[14]通过引入序列分解的方法降低数据的复

杂性,再通过时间卷积网络与双向门控循环单元对各个分

解序列进行特征提取,实现了较好的预测效果。
然而,随着预测长度的增加,基于循环神经网络的模型

面临着梯度消失或梯度爆炸问题,尤其是在处理长时间序

列时,模型难以有效捕捉到长期预测的依赖关系。此外,随
着预测步长的增加,误差会逐步累积,导致预测精度下降。
为了克服这些问题,另一类基于注意力机制的编码器-解码

器架构的Transformer模型[15]应运而生。Transformer模

型能够高效地挖掘光伏发电功率数据中不同特征间的复杂

关系和长期依赖,显著提高了预测精度。如文献[16]采用

Transformer编码器和解码器结构来提取数据特征之间的

复杂关系和长期依赖关系,实现了对光伏发电功率的超短

期预测。文 献 [17]结 合 多 种 特 征 融 合 器 和 改 进 的

Transformer模型,在光伏发电功率短期多步预测中取得

了优异的结果。文献[18]通过引入主成分分析(principal
 

component
 

analysis,
 

PCA)进行数据降维,再结合一维双通

道注意力机制与Informer模型,提升了模型对时间特征和

空间特征的提取能力,进一步提高了预测准确率。尽管基

于Transformer改进的模型在光伏功率预测领域已取得一

定进展,但仍存在诸多不足。同时光伏数据通常具有显著

的周期性和非线性特征[19],而现有预测方法在特征提取方

面仍存在缺陷,未能充分挖掘数据中的周期性特征和全局

特征。此外,这些方法的计算复杂度较高,导致模型在训练

和推理过程中面临较大的计算负担。
因此针对上述问题,本文提出了一种基于频域和时域

学习的中长期光伏发电功率预测模型FFTEMixer,其目的

是提升中长期时间范围内光伏发电功率预测的稳定性、准
确性与效率。该模型主要由3部分组成分别为频率特征提

取模块(frequency
 

feature
 

extraction
 

block,
 

FFEBlock)、特
征融合器和时间特征提取模块(temporal

 

feature
 

extractor
 

block,
 

TFEBlock)。通过引入频域分析手段,从全局视角

对光伏功率序列展开深入剖析,以挖掘其中的周期性特征、
全局特征和潜在的变化模式[20-21]。本文的主要贡献如下:

1)本文提出了一种用于中长期光伏发电功率预测的

FFTEMixer模型,该模型创新性的将频域信息与时域信息

融合,使其能够更精准地捕捉周期性特征和全局特征。具

体而言,模型首先通过FFEBlock将时序数据转换到频域

空间,有效提取全局特征和变量间相关性特征;随后利用特

征融合器挖掘周期性模式并建立特征变量与时间协变量的

关联;最后再通过TFEBlock学习时间维度的长期依赖关

系,从而实现了全面的特征提取。并针对光伏发电功率数

据的周期性和非平稳性特点进行了优化,提高了模型在中

长期光伏发电功率预测的准确率。

2)提出了一种自适应误差混合损失函数(adaptive
 

hybrid
 

loss,
 

AHLoss),通过动态调整损失权重,在训练过

程中自适应平衡精度与鲁棒性。具体而言,一方面引入基

于误差分布的自适应调整策略,有效增强了模型对异常值

和噪声数据的鲁棒性;另一方面采用训练进度感知的权重

调度方法,显著提升了优化过程的收敛稳定性。并通过实

验验证了其有效性。

1 模型建立与分析

1.1 问题定义

  光伏发电功率预测任务可以表述为一个多变量预测单

变量的时间序列预测问题,根据现有的历史观测数据预测

未 来 一 段 时 间 内 的 光 伏 发 电 功 率。 设 X =
X1,X2,…,XT  ∈ℝT×N 表示一组定期采样的多变量光伏

发电数据,其中T 是该数据集的序列的长度,N 是该数据

集的特征数量。
将时间步t处长度为L 的时间序列作为模型的输入序

列,即Xt= Xt-L+1,Xt-L+2,…,Xt  ∈ ℝL×N。 将时间步t
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处长度为H 的未来窗口作为预测的目标序列,表示为Yt=
Xt+1,Xt+2,…,Xt+H  ∈ ℝH×1。 多变量时间序列预测任务

是使用历史观察值 Xt 来预测未来值Ŷt,表示为Ŷt =
fθ Xt  ,其中fθ 是预测模型,θ是模型参数。

1.2 模型整体框架

  本文提出了一种基于频域和时域学习的中长期光伏发

电功率预测模型FFTEMixer,其结构如图1所示。该模型

主要由FFEBlock、特征融合器和 TFEBlock三部分组成。
首先将输入序列的特征变量与时间戳协变量分别通过反转

嵌入层进行特征维度与序列维度的反转,再通过一维卷积

模块将每个变量的时间序列投射到D维潜在空间,使得特

征变量与时间戳协变量获得相关性更强的局部特征表示;
然后通过FFEBlock将特征变量投影到频域中,通过一个

可学习的频率滤波器选择性地增强或抑制特定频率分量从

而实现对特征变量的全局特征特征和变量相关性特征的提

取,紧接着再通过一个交互式卷积模块学习局部依赖关系,
提高特征表达能力;然后再通过特征融合器将特征变量与

时间戳协变量进行融合,建立特征变量和时间戳协变量的

联系,同时引入可学习的频域滤波器对融合后的特征进行

频谱调制,以增强关键周期性分量的表征能力;然后再通过

TFEBlock的多头自注意力机制全面的提取时间依赖性特

图1 FFTEMixer模型结构图

Fig.1 Structural
 

diagram
 

of
 

the
 

FFTEMixer
 

model

  征和长期依赖性特征;最后将提取的特征通过一个线性层

进行映射得到输出结果。算法描述如算法1所示。

算法1 FFTEMixer预测算法

输入时间序列数据Xt ∈ ℝL×N

输出时间序列数据Yt ∈ ℝH×1

1.
 

X1
t =Xt +FilterBlock Xt  

 

2.
 

X2
t =X1

t +ICB X1
t  

3.
 

X*
t =FeatureFusion X2

t  
 

4.
 

for
 

l
 

in
 

{1,2,…,N}
 

5.
 

  X*,l
t =Attention X*,l-1

t  
 

6.
 

  X*,l
t =LayerNorm X*,l

t +X*,l-1
t  

 

7.
 

  X*,l
t =LayerNorm FFN X*,l

t  +X*,l
t  

 

8.
 

End
 

for
9.

 

Yt =projection X*,N
t  

 

10.
 

return
 

Yt

1.3 FFEBlock
  FFEBlock由两部分组成分别是可学习的频率滤波器

与交互式卷积块,用于高效提取全局特征、变量相关性特征

和局部特征。同时考虑到时间序列数据通常是在较长时间

内收集的,数据间普遍存在非平稳性,这种非平稳性通常会

对模型的泛化能力产生不利影响。因此本文在模型输入的

序列Xt 上使用了一种可逆实例归一化方法RevIN[22]用于

降低长期时间序列中分布偏移对预测的影响。
频率滤波器它的核心思想是循环卷积,用于发现变量

间的潜在相关性。该模块首先通过快速傅里叶变换将特征

变量从时域映射到频域,使不同变量的频谱信息得以表达,
其中相似的变量可能在相同频率分量上具有较强能量;然
后将序列的频率信息与滤波器进行元素相乘选择性地增强

或抑制特定频率分量,实现频域上的变量交互,使得相关变

量的频谱模式相互作用并得到增强,而无关变量的频谱特

征被削弱,从而提取变量的潜在相关性;最后再通过逆傅里

叶变换将处理后的数据变换回时域。具体计算过程如

式(1)所示。

FilterBlock Xt  =IFFT FFT Xt  ☉Hfilter  (1)
其中,FFT 是快速傅里叶变换,IFFT 是逆傅里叶变

换,☉ 表示元素乘积,Hfilter 是采用随机初始化可学习权

重的普通滤波器。
交互式卷积模块(interactive

 

convolution
 

block,
 

ICB)
由两个不同内核大小的卷积模块组成,用以捕捉较大范围

的局部特征。具体来说,第一个卷积模块旨在用较小的内

核捕捉数据中细粒度的局部模式;第二个卷积模块的目的

是用较大的内核识别较大范围的依赖关系;然后通过元素

乘积操作将不同尺度的特征进行交互,从而更好地对复杂

关系进行建模。具体实现过程如下:

A1 =GELU Conv1Xt    ☉Conv2Xt  (2)
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A2 =GELU Conv2Xt    ☉Conv1Xt  (3)

ICB Xt  =Conv3A1+A2  (4)
其中,Conv1、Conv2、Conv3是一维卷积模块,GELU

是激活函数。

1.4 特征融合器

  时间序列数据是一种特殊类型的数据,它按照时间记

录了一系列数据点,这就使时序数据具有很强烈的时间依

赖性,每个数据点都有一个与之关联的时间戳,显示出时间

相关性。时间序列数据在分析和预测时,需要着重对这种

时间依赖性考虑。
因此该模块主要是用于特征变量与时间戳协变量进行

融合。对于时间戳,分别从月、周、日、时、分、秒等时间粒度

嵌入,然 后 与 特 征 变 量 进 行 特 征 融 合。首 先 该 模 块 将

FFEBlock输出序列Xt 的特征变量与目标变量进行分离;
然后再将目标变量其与时间戳协变量进行连接形成新的序

列;最后为了进一步提高特征的表达能力将其再通过一个

可学习的频率滤波器捕捉周期性特征与全局依赖性特征,
以增强关键周期性分量的表征能力。具体计算过程如下:

Si
t = t1,t2,…,tk  (5)

St = St-L+1,St-L+2,…,St  (6)

X*
t =ConcatXt,St  (7)

X*
t =FilterBlock X*

t  (8)

其中,Si
t 代表第i个时间戳向量表示,k表示时间戳中

的细粒度个数,St 是时间步t处对应的时间戳向量,X*
t ∈

ℝ k+1  ×D 是融合时间戳信息的模型输出序列。

1.5 TFEBlock
  TFEBlock采用了iTransformer[23]的模型的编码器结

构,该编码器由多个相同的编码层堆叠组成,用于捕获目标

变量与时间戳协变量的长期依赖性和时间依赖性。每个编

码层由多头注意力机制、层归一化和前馈网络组成。该模

块首先通过自注意力机制对全局信息进行建模提取长期依

赖性特征和时间依赖性特征,其注意力权重计算公式如下。

Attention Q,K,V  =softmax
QKT

dK  V (9)

其中,Q 为查询向量,K 为关键词向量,V 为值向量,

dk 为关键词向量的维度,softmax(·)为数据归一化计算。
然后再通过前馈神经网络将注意力机制层输出的特征

映射到更高维度的非线性空间,用于提升模型的非线性表

达能力以及进一步增强模型对复杂模式的学习能力。具体

计算过程如下。

X*,l
t =LayerNorm Attention X*,l-1

t  +X*,l-1
t  

(10)

FFN X*,l
t  =GELU X*,l

t W1+b1  W2+b2 (11)

X*,l
t =LayerNorm FFN X*,l

t  +X*,l
t  (12)

其中,X*,l-1
t 表示前一层的输出结果,W1和W2是权重

矩阵,b1 和b2 是偏置项。

1.6 线性映射层

  特征序列经过TFEBlock后,将其输出结果通过一个

线性层进行映射得到预测结果,实现从历史长度L 至目标

预测长度H 的映射。具体计算过程如下。

Yt =projection X*,N
t  (13)

最后的输出结果为Yt∈ ℝH×1。

1.7 AHLoss
  AHLoss结合了平均绝对误差和均方误差损失函数,
并通过误差自适应调整和训练进度自适应调整进行优化。
具体计算如式(14)所示。

L =λ1(t)·LMAE +λ2(t)·LMSE (14)
其中,LMAE 为绝对误差损失,LMSE 为均方误差损失,

λ1(t)和λ2(t)是随误差大小和训练进度自适应变化的权

重。当误差较大时,提高LMAE 的权重,以增强模型对异常

值的鲁棒性;当误差较小时,提高LMSE 的权重,以提升拟合

精度。通过结合两种损失的梯度信息,确保训练稳定性和

提高收敛速度。

2 数据处理与分析

2.1 数据集准备与处理

  为了验证本文模型在中长期光伏发电功率预测任务中

的可靠性,本文使用了两个不同场地的光伏发电数据集用

来验证本文模型有效性。

PV-1数据集来源数据来源于新疆某地光伏发电站

2019年1月1日~12月31日发电功率数据,共有35
 

040
条数据,采样频率间隔15

 

min,经过数据预处理后该数据中

除了时间戳还有7列特征,包括组件温度、空气温度、湿度、
总辐射、直射辐射、散射辐射和发电功率,共35

 

040行

数据。

PV-2数据集来源于宁夏某光伏发电厂2016年1月1
日~2020年10月6日的光伏发电数据,共有41

 

783条数

据,采样频率为1
 

h。经过数据预处理后该数据集中除了时

间戳还有9列特征,包括空气温度、散射辐射、直接辐射、总
水平辐射、固定倾角辐射、跟踪倾角辐射、相对湿度、天顶角

和发电功率。
本文对该数据进行了数据预处理,首先是检查这两个

数据集是否存在异常值和缺失值,并通过线性插值法替换

这些异常数据,同时为便于模型收敛,模型在对输入的数据

做了标准化处理。最后将处理好的两个数据集进行分割,
选择时间序列的70%用于训练集,10%用于验证集,20%
用于测试集。

2.2 评价指标

  为了评 估 模 型 的 性 能,本 文 使 用 了 平 均 绝 对 误 差

(mean
 

absolute
 

error,
 

MAE)和均方误差(mean
 

squared
 

error,
 

MSE)为模型预测结果与真实值差异的衡量标准。
预测结果越接近真实值,MSE和 MAE的值越小。其计算

公式为:
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MSE =
1
n∑

n

i=1
ŷi-yi  2 (15)

MAE =
1
n∑

n

i=1
ŷi-yi (16)

其中,n表示测试集的样本总数,ŷi表示预测值,yi表

示真实值。

3 实验结果与分析

  本 文 实 验 环 境 采 用Intel
 

i5-12400f处 理 器,NVIDIA
 

GeForce
 

RTX
 

4060显卡,内存16
 

G,编程语言采用Python
 

3.12,基本框架为Pytorch。最终的超参数设置由表1所示。

3.1 光伏发电功率预测结果

  为了探究本文模型在不同预测长度上的性能表现,本
文选择了5个 当 前 主 流 的 基 准 模 型 进 行 比 较,分 别 为

MEAformer[24]、SOFTS[25]、TimeXer[26]、iTransformer和

PatchTST[27]。遵循长期时间序列预测任务标准选择历史

序列长度为96,预测步长分别为96、192、336和720。实验

  

表1 模型超参数

Table
 

1 Model
 

hyperparameters
参数名称 参数值

输入序列长度 96
注意力头数 8

隐藏层特征数 512
编码层个数 2

丢失率 0.1
激活函数 GELU
学习率 0.000

 

1
批次大小 32
损失函数 AHLoss
优化器 Adam

训练轮数 10

结果如表2所示,表中加粗的数据表示对比模型中表现最

出色的结果。

表2 各个模型光伏数据预测结果

Table
 

2 Results
 

of
 

photovoltaic
 

data
 

prediction
 

for
 

each
 

model

数据集 预测步长
本文 MEAformer SOFTS TimeXer iTransformer PatchTST

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PV-1

96 0.142 0.191 0.170 0.233 0.166 0.215 0.156 0.223 0.173 0.231 0.165 0.229
192 0.154 0.202 0.197 0.249 0.187 0.231 0.185 0.259 0.210 0.255 0.179 0.239
336 0.150 0.206 0.201 0.252 0.193 0.238 0.185 0.255 0.205 0.254 0.181 0.241
720 0.151 0.217 0.203 0.255 0.189 0.241 0.175 0.247 0.196 0.254 0.180 0.241
Avg 0.149 0.204 0.192 0.247 0.183 0.231 0.175 0.246 0.196 0.248 0.176 0.237

PV-2

96 0.077 0.137 0.087 0.161 0.084 0.157 0.090 0.186 0.085 0.162 0.091 0.190
192 0.079 0.142 0.090 0.165 0.087 0.161 0.095 0.193 0.086 0.163 0.096 0.191
336 0.080 0.149 0.094 0.169 0.088 0.165 0.097 0.195 0.087 0.165 0.101 0.202
720 0.082 0.154 0.103 0.183 0.093 0.177 0.098 0.195 0.088 0.171 0.113 0.212
Avg 0.079 0.145 0.093 0.169 0.088 0.165 0.095 0.192 0.086 0.165 0.100 0.198

  由实验结果可知,本文提出的光伏发电功率长期预测

方法在多个预测步长上显著优于当前主流模型,在PV-1
和PV-2数据集上本文模型相比次优模型在 MSE上平均

降低12.6%,在 MAE上平均降低15.8%,展现了更强的

预测精度和长期预测的稳定性。具体而言,在PV-1数据

集中,本 文 方 法 的 MSE 比 次 优 的 TimeXer 降 低 了

14.9%,MAE比次优模型SOFTS降低11.7%;在PV-2
数据集中,MSE比次优的SOFTS降低了10.2%,MAE比

次优模型SOFTS与iTransformer降低12.1%。随着预测

长度的增加,本文方法的误差增长幅度最小,在PV-1和

PV-2数据集中 MSE从96到720仅增长6.3%和6.4%,
远低于次优模型SOFTS的13.9%和10.7%,表明其能有

效缓解长期预测中的误差累积问题。以上实验结果说明

本文所提模型通过将频域与时域特征进行融合,有效的提

取到更多的全局特征、周期性特征和长期依赖性特征,使

得本文模型在中长期光伏发电功率预测任务中更加具有

优势。
3.2 消融实验

  为了验证FFTEMixer模型各个优化模块的有效性,
进行了消融实验。数据集选择本文使用的两个光伏发电

功率数据集,预测步长选择96、192、336和720,消融实验

结果如表3所示。实验设置为:模型1去除FFEBlock组

件;模型2去除TFEBlock组件;模型3去除特征融合器;
模型4去除AHLoss损失函数。

消融实验结果表明,各模块对模型性能均具有重要贡

献。其中,TFEBlock的移除导致性能下降最为显著:在
PV-1和PV-2数据集上,平均 MSE分别增加32.9%和

23.8%,MAE分别上升23.2%和14.3%,这验证了该模块

作为模型核心组件的重要性,进一步体现了对时间戳协变

量进行特征提取的重要性。FFEBlock的缺失使两个数据
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  表3 消融实验结果

Table
 

3 Results
 

of
 

ablation
 

experiments

数据集 预测步长
本文 模型1 模型2 模型3 模型4

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PV-1

96 0.142 0.191 0.150 0.204 0.170 0.231 0.155 0.203 0.147 0.212

192 0.154 0.202 0.167 0.218 0.194 0.255 0.166 0.214 0.163 0.232

336 0.150 0.206 0.160 0.214 0.197 0.263 0.183 0.224 0.163 0.237

720 0.151 0.217 0.161 0.217 0.199 0.266 0.170 0.218 0.156 0.238

PV-2

96 0.077 0.137 0.082 0.143 0.086 0.156 0.084 0.156 0.076 0.149

192 0.079 0.142 0.082 0.148 0.088 0.159 0.082 0.156 0.078 0.153

336 0.080 0.149 0.083 0.150 0.091 0.163 0.086 0.160 0.080 0.157

720 0.082 0.154 0.083 0.152 0.099 0.176 0.095 0.172 0.083 0.162

集的平均 MSE分别升高7.4%和3.8%;而特征融合器

的移除则导致PV-1数据集192步长预测的 MSE增加

7.8%,PV-2 数 据 集 720 步 长 预 测 的 MAE 上 升

11.7%。这些结果充分表明,FFEBlock的频域特征提

取能力、TFEBlock的时间特征提取能力以及特征融合

器的特征整合功能缺一不可,三者协同工作共同提升了

模型性能。此外,AHLoss损失函数通过增强模型对异

常值的鲁棒性和训练过程的稳定性,进一步优化了整体

预测效果。

3.3 效率分析

  本文对FFTEMixer模型进行了效率分析,在PV-1数

据集上将各个模型在训练阶段的每轮运行时间和内存占

用进行了比较,其结果如图2所示。该图展示了各个模型

预测长度为96步下训练一轮的平均耗时对比,跟每个模

型在训练时内存占用对比。
由图2可以看出,在预测步长为96时,本文模型与当

前主流模型的训练时长与内存占用相比具有一定的优势。
内存占用相比于SOFTS有略微的提高,但模型的训练速

度相近。这表明本文模型能够同时兼顾预测精度和运行

效率,具有较高的应用价值。

3.4 结果可视化分析

  为了更好的验证FFTEMixer模型预测的效果,本文

  

图2 内存占用和训练时长对比图

Fig.2 Comparison
 

diagram
 

of
 

memory
 

occupancy
 

and
 

training
 

duration

对部分预测结果进行了可视化。其结果如图3和4所示。
图3展示的是PV-1数据集在预测步长为336时各个模型

的预测结果。图4展示的是PV-2数据集在预测步长为96
时各个模型的预测结果。其中横轴表示时间步长,纵轴表

示标准化后该时间步对应的光伏发电功率。橙色实线表

示预测值,蓝色虚线表示真实值。由图3、4可以看出,本文

模型 的 预 测 曲 线 与 真 实 值 曲 线 更 加 贴 合,这 表 明

FFTEMixer模型能够提供更精准的预测。
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图3 PV-1数据集可视化结果图

Fig.3 Visualization
 

results
 

diagram
 

of
 

PV-1
 

dataset

图4 PV-2数据集可视化结果图

Fig.4 Visualization
 

results
 

diagram
 

of
 

PV-2
 

dataset

4 结  论

  由于光伏发电序列具有较强的周期性特征和非线性

特征,使得传统的RNN和 Transformer系列模型存在特

征提取不足导致在光伏发电功率的中长期预测中表现较

差,因此本文提出一种用于光伏发电功率中长期预测模型

FFTEMixer。通过实验分析,得出以下结论:将FFEBlock
与TFEBlock结合使用,使模型能够在频域和时域实现协

同特征提取,既能捕获全局特征信息,又能建模长期依赖

关系,从而显著提升预测精度;通过引入特征融合器建立

特征变量与时间戳协变量的联系,增强了模型在捕捉周期

性特征和时间依赖性特征方面的能力,进一步提高了预测

效果。但是本文采用的基于可学习频率滤波器的频域特

征提取方法其特征提取能力有限,因此后续研究将重点探

索更高效的频域信息处理方式,以期进一步提升模型的频

域特征提取能力。
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