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Abstract: To address the performance distortion issue in the light-load region faced by the state-trajectory-model-based
synchronous rectification method for CLLC resonant converters, this paper proposes an optimized synchronous
rectification strategy based on the state trajectory model. Through an in-depth analysis of the DCM of the converter
under light-load conditions, the boundary conditions for current DCM are derived, enabling accurate identification of
the current discontinuous mode and effectively suppressing circulating current losses. The proposed method requires no
additional detection devices and relies solely on basic input and output electrical parameters to achieve control,
significantly reducing hardware complexity and cost. Experimental validation on an 800 W platform demonstrates that

the proposed scheme achieves a peak conversion efficiency of 97. 38% across the entire operating frequency range, with
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notable improvements in dynamic response and overall efficiency compared to traditional methods.
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Fig.1 Topology of CLLC converter
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Fig. 2 CLLC resonant converter operation critical waveforms
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Fig.3 Trajectory diagram of the above-resonant state
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Fig. 4 Critical waveforms and modes of CLLC resonant converter
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Fig. 5 Below-resonant state trajectory
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DCM region
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Fig. 7 Control block diagram
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Table 1 Parameters of the prototype

Vi/V 200
V,/V 160~250
L.,&L,/pH 32.25 1 32.25
C, & C,/nF 78.56 : 78. 56
L./pH 167.7
f./kHz 70~130
n 1
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switching load SR waveform, input voltage 200 V, output voltage

160 V, output current 5 A switching to 0.5 A
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250 V, output current 5 A switching to 0. 5 A
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scheme proposed in this paper and the SR scheme in reference [16]
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