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Automatic modulation recognition based on SVD and hybrid
neural network model
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Abstract: With the significant increase in the complexity and diversity of modulation types in modern wireless
communication environments, higher requirements are placed on the performance of automatic modulation recognition
technology. This paper proposes a hybrid neural network model consisting of a convolutional neural network. a squeeze
and excitation module, a long short-term memory network, a gated recurrent unit, and a fully connected layer network
to improve the efficiency and accuracy of AMR technology. First, to address the problem of limited modulation signal
recognition accuracy in low signal-to-noise ratio environments, a singular value decomposition algorithm is introduced
to denoise the received 1/Q signal, thereby improving the recognition accuracy of modulation signals under low signal-
to-noise ratios while improving signal quality. Then, a convolutional neural network is used to extract multi-channel
spatial features from the denoised signal. Then, a squeeze and excitation module is added to improve the pertinence of
feature extraction. The gated recurrent unit and the long short-term memory network are combined to capture the time
series characteristics of the signal. Finally, the extracted features are mapped to the classification space of the
modulation mode through a fully connected layer network for classification and recognition. Experimental results show
that the proposed network model significantly improves the modulation recognition accuracy in a low signal-to-noise
ratio environment. The average recognition accuracy on the RadioML2016. 10b dataset reaches 64. 63%. At the same
time, it enhances and improves the distinction and recognition accuracy of QAMI16 and QAMG64,

Keywords: automatic modulation recognition; singular value decomposition; convolutional neural networks; gated

recurrent units;long short-term memory network
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Table 3 Model performance comparison

RadioM1.2016. 10a

RadioML.2016. 10b

HESR T e UG [1] FE U e UITZR N [1] FE U

Cs/JA 3D HEB R/ 0 s/ JF3D HEB R/ o
Ours 261 410 10 62.28 261 281 53 64. 63
CGDNet 124 933 5 50. 01 124 676 27 60. 56
CNNI1 1592 383 2 55. 50 1592 126 13 58.77
CNN2 858 123 2 55. 54 857 994 67 60. 43
IC-AMCNet 1264 011 3 56. 80 1263 882 19 62. 40
LSTM 201 099 7 57.78 200 970 38 63.51
MCNET 121 611 20 56. 56 121 226 110 59. 56
CGDNN 71 871 3 59. 90 71 742 33 63. 85
ResNet 3098 283 20 54. 46 3098 154 106 60. 94
MCLDNN 406 199 13 61. 70 406 070 68 63.76

5.2 EBHRSH
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Table 4 Modulation recognition results of different models of RadioML2016. 10a under low signal-to-noise ratio
e PUNAER R/ %
—12 dB —10 dB —8 dB —6 dB —4 dB —2dB 0 dB
Ours 20. 05 27.72 42.09 58. 32 69.77 82.73 89. 86
CGDNet 16. 09 23.68 33.27 49. 82 62.23 72.68 78.32
CNN1 16. 81 25. 14 38. 50 55. 04 64.63 75.05 80. 32
CNN2 15. 14 21.55 34. 64 54. 68 68. 41 76. 95 81.68
IC-AMCNet 13. 00 20. 32 32.68 52.09 65. 00 74.77 81. 27
LSTM 16. 64 23.18 35.50 50. 27 59. 41 71. 50 80.18
MCNET 15. 00 22.41 37. 64 53.95 63. 41 73. 36 78.45
CDGNN 18. 41 26.18 39.45 52. 64 65. 69 76.91 85.68
ResNet 12. 41 20. 95 33.50 47.59 59. 05 69. 77 75. 86
MCLDNN 15. 00 22.91 39. 36 58.77 70. 59 81.22 87.95
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