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摘 要:随着现代无线通信环境中调制类型复杂性和多样性的显著增加,对自动调制识别技术的性能提出了更高要求。
文章提出一种由卷积神经网络、挤压与激励模块、长短期记忆网络、门控循环单元和全连接层网络组成的混合神经网络

模型,提升AMR技术的效率和准确性。首先,针对低信噪比环境下调制信号识别精度受限的问题,引入奇异值分解算法

对接收的I/Q信号进行去噪,在提高信号质量的基础上提高低信噪比下调制信号的识别精度。然后,利用卷积神经网络

对去噪后的信号进行多通道空间特征提取,随后加入挤压与激励模块提升特征提取的针对性,将门控循环单元和长短期

记忆网络相结合,捕获信号的时间序列特征,最后,通过全连接层网络将提取的特征映射到调制方式的分类空间进行分

类识别。实验结果表明,提出的网络模型在低信噪比环境下显著提高了调制识别精度,在RadioML2016.10b数据集上的

平均识别准确率达到了64.63%,同时增强和提高了对QAM16与QAM64的区分与识别精度。
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Abstract:With
 

the
 

significant
 

increase
 

in
 

the
 

complexity
 

and
 

diversity
 

of
 

modulation
 

types
 

in
 

modern
 

wireless
 

communication
 

environments,
 

higher
 

requirements
 

are
 

placed
 

on
 

the
 

performance
 

of
 

automatic
 

modulation
 

recognition
 

technology.
 

This
 

paper
 

proposes
 

a
 

hybrid
 

neural
 

network
 

model
 

consisting
 

of
 

a
 

convolutional
 

neural
 

network,
 

a
 

squeeze
 

and
 

excitation
 

module,
 

a
 

long
 

short-term
 

memory
 

network,
 

a
 

gated
 

recurrent
 

unit,
 

and
 

a
 

fully
 

connected
 

layer
 

network
 

to
 

improve
 

the
 

efficiency
 

and
 

accuracy
 

of
 

AMR
 

technology.
 

First,
 

to
 

address
 

the
 

problem
 

of
 

limited
 

modulation
 

signal
 

recognition
 

accuracy
 

in
 

low
 

signal-to-noise
 

ratio
 

environments,
 

a
 

singular
 

value
 

decomposition
 

algorithm
 

is
 

introduced
 

to
 

denoise
 

the
 

received
 

I/Q
 

signal,
 

thereby
 

improving
 

the
 

recognition
 

accuracy
 

of
 

modulation
 

signals
 

under
 

low
 

signal-
to-noise

 

ratios
 

while
 

improving
 

signal
 

quality.
 

Then,
 

a
 

convolutional
 

neural
 

network
 

is
 

used
 

to
 

extract
 

multi-channel
 

spatial
 

features
 

from
 

the
 

denoised
 

signal.
 

Then,
 

a
 

squeeze
 

and
 

excitation
 

module
 

is
 

added
 

to
 

improve
 

the
 

pertinence
 

of
 

feature
 

extraction.
 

The
 

gated
 

recurrent
 

unit
 

and
 

the
 

long
 

short-term
 

memory
 

network
 

are
 

combined
 

to
 

capture
 

the
 

time
 

series
 

characteristics
 

of
 

the
 

signal.
 

Finally,
 

the
 

extracted
 

features
 

are
 

mapped
 

to
 

the
 

classification
 

space
 

of
 

the
 

modulation
 

mode
 

through
 

a
 

fully
 

connected
 

layer
 

network
 

for
 

classification
 

and
 

recognition.
 

Experimental
 

results
 

show
 

that
 

the
 

proposed
 

network
 

model
 

significantly
 

improves
 

the
 

modulation
 

recognition
 

accuracy
 

in
 

a
 

low
 

signal-to-noise
 

ratio
 

environment.
 

The
 

average
 

recognition
 

accuracy
 

on
 

the
 

RadioML2016.10b
 

dataset
 

reaches
 

64.63%.
 

At
 

the
 

same
 

time,
 

it
 

enhances
 

and
 

improves
 

the
 

distinction
 

and
 

recognition
 

accuracy
 

of
 

QAM16
 

and
 

QAM64.
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0 引  言

  从未知的接收信号中分类并识别其调制技术的过程被

叫做自动调制识别[1](automatic
 

modulation
 

recognition,

AMR)。随着无线通信的快速发展,通信环境日益复杂,信
号的调制方式也变得越来越复杂和多样。调制识别成为连
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接信号检测和信号解调之间的关键步骤,在噪声环境下,且
部分或者是全部先验信息缺失的情况下,AMR通过精心

设计一系列算法,提取接收信号的特征,进而识别其调制方

式,并有效估计相关调制参数,为后续的解调及其他信号处

理步骤提供至关重要的支持,确保了无线通信的准确性和

可靠性[2]。

AMR在军事和民用的通信领域均扮演者举足轻重的

角色。在军事通信领域,AMR技术不仅助力拦截敌方无

线通信信号,对其实施针对性的干扰和严密监控[3],更成为

争夺和控制电磁能量的关键方法;在民用通信中,主要应用

于频谱监测、动态频谱访问、发射机监控和认知无线电等多

个方面,如政府及相关部门利用调制识别技术验证和规范

无线信号,以提高频谱利用率,同时也防止非法使用无线

频谱。
在5G等大规模无线通信系统中,AMR对无线电信号

的调制类型分类,被视为多类决策问题[1]。在噪声和多径

衰落的复杂条件下,确保对调制类型的高精度识别成为一

项关 键 任 务。面 对 这 一 挑 战,将 人 工 智 能 (artificial
 

intelligence,AI)算法[4]运用在 AMR方面,被认为是未来

的主流解决方案。
近年来,深度学习(deep

 

learning,
 

DL)[5]广泛应用于

计算机视觉和自然语言处理等领域,并获得了巨大成功。

O’Shea等[6]首次将DL算法运用在AMR当中,将卷积神

经网络(convolutional
 

neural
 

networks,
 

CNN)用于调制识

别,显示了CNN对复值时间信号域的适应及改进性能,同
时也证明了CNN在低信噪比下对大型且密集编码的时间

序列进行盲时间学习的方案是可行的。陶志勇等[7]提出了

一种基于双注意力机制与Ghost模块的轻量级CNN模型

AG-CNN的调制识别方法,将调制信号映射至复空间,得
到高阶特征星座图,输入到模型进行学习训练,大量节省了

学习参数量的同时提高了模型性能。Li等[8]提出了一种

混合深度学习模型LAGNet,结合长短期记忆网络(long
 

short
 

term
 

memory,LSTM)和 图 卷 积 网 络 (graph
 

convolutional
 

network,GCN),使用注意力机制将 LSTM
输出映射到图中,然后GCN提取信号的空间特征,减少了

模型的可学习参数。Elsagheer等[9]结合了残差神经网络

(residual
 

neural
 

network,ResNet)和LSTM,利用ResNet
网络最小化梯度消失和LSTM 的时间敏感性,在18

 

SNR
下实现的峰值分类准确率为92%,提升了高信噪比的分类

准确率。Zhang等[10]提出一种将CNN与Transformer相

结合的新型自动调制识别网络CTRNet,利用Transformer
充分捕获全局序列之间长距离依赖关系的能力及CNN提

取信号局部特征的能力,在参数效率上表现出明显优势。
在无线电信号调制识别的任务中,DL因其卓越的特

征学习能力,展现出显著提升识别精度的潜力。在高信噪

比的环境下,调制信号识别准确率通常较高。但在低信噪

比条件时,由于噪声干扰和信道环境的复杂多变,调制信号

的识别准确率往往不尽如人意,这使得低信噪比下的调制

分类识别成为一项极具挑战性的任务。
本文的核心工作是创新地将奇异值分解方法应用于调

制信号的降噪处理,针对信号噪声在调制识别中的影响,有
效降低了噪声环境对识别精度的干扰,显著提升低信噪比

下的识别精度;此外,还提出了一种由CNN、挤压与激励

(squeezeand-excitation,SE)[11]模块、GRU-LSTM及全连接

层网络组成的全新网络模型。该模型利用CNN与SE模

块结合提取多通道I/Q信号的空间特征信息,丰富了其空

间特征的表达。采用GRU与LSTM组合使得到的时间序

列信息更加充分完整。与现有的一些模型相比,此模型在

提升性能的同时其复杂度有一定程度的减小,并显著提高

了低信噪比下的识别准确率及整体平均准确率,特别是增

强并提高了对 QAM16和 QAM64的区分与识别准确率,
为无线电信号调制识别领域带来了新的突破,也为未来的

相关研究提供了有价值的参考。

1 调制信号模型

  在通信系统中,包含I/Q信号分量的等效基带信号[12]

可以表示为:

y(l)=Ae
j(2πf0Tl+θl)·∑

∞

n= -∞
x(n)h(lT-nT+ TT)+g(l)

(1)
其中,x(n)是复基带符号序列,A 表示未知幅度的因

子,h(·)表示残余通道效应,T 是符号间距,T 指时间误

差,且0≤ T ≤1,f0 表示频率偏移或残余载波频率,θl 是

相位抖动,g(l)表示复加性高斯白噪声(additive
 

white
 

gaussian
 

noise,AWGN)序列。
接收的调制信号以离散I/Q分量存储,信号采样频率

为fs =1/Ts,样本长度设为L的离散时间序列y为:

y= [y[0],y[1],…,y[L-1]]T ∈ ℂL (2)

y(k)=yI[k]+jyQ[k],k=0,1,…,L-1 (3)
式中:y(k)表示同相分量yI(k)和正交分量yQ(k)的组

合,即I/Q通道的实部和虚部。

2 奇异值分解去噪原理

  奇异值分解[13](singular
 

value
 

decomposition,SVD)作
为一种矩阵分解方法,其被广泛应用于信号处理领域,特别

是在信号的降噪处理中,能够有效地利用原始信号和噪声

信号在能量上的可分离性[14],通过将信号看作数据矩阵,

SVD根据原始信号和噪声信号间的奇异值对应关系,对信

号进行准确的特征分析。尽管在高信噪比下,无线电信号

的自动调制识别技术已经能实现较高的识别精度,但现代

电子环境的噪声环境逐渐变得复杂,导致低信噪比下识别

精度并不理想。为了减小噪声环境对调制识别的影响,从
而提高低信噪比下信号识别的精确度,在时间序列信号预

处理过程中引入奇异值分解,其通常分为矩阵构造、奇异值
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周顺勇
 

等:基于SVD与混合神经网络模型的自动调制识别 第21期

分解和信号重构3个部分。通过对含噪信号构成的矩阵进

行分解即降维和去噪处理,保留信号特征奇异值,对去噪后

的信号矩阵进行重构以此得到去噪后的信号。
对带有噪声干扰的离散信号x(i)(i=1,2,…N)进行

奇异值分解,x(i)为观测的时间序列,N 为信号采样点

数,需要将其映射到m×n维的相空间,构造矩阵X:

X =

s(1) s(2) … s(n)

s(2) s(3) … s(n+1)
︙ ︙ ︙ ︙

s(m)s(m+1) … s(N)

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

(4)

此矩阵称为 Hankel矩阵,是一种特殊的矩阵类型,其
反对角线上的元素相等,其中N =m+n-1,m 为信号样

本数,n表示信号的特征维度且1<n<N。
奇异值分解实现了具有任意维数的矩阵数据集的精确

分 解,对 于 实 矩 阵 X, 存 在 正 交 矩 阵 U =
u1 u2 … um  ∈Rm×m 和V = v1 v2 … vn  ∈

Rn×n,使得式(5)成立。

X =USVT (5)
其中,U 是m×m 的正交矩阵,为矩阵X 的左奇异矩

阵,矩阵X 的列向量uj(j=1,2,…m )为矩阵X 的左奇异

向量;V 是n×n的正交矩阵,为矩阵X 的右奇异矩阵,矩
阵X 的列向量vl(l=1,2,…n)为矩阵X 的右奇异向量;S
表示奇异值组成的m×n对角矩阵,S∈Rm×n,Rm×n 表示实

数矩阵。
对角矩阵S 表示为:

S=

diag(σ1,σ2,…,σr),0  , m <n
diagσ1,σ2,…,σr    , m =n
diag(σ1,σ2,…,σr),0  T, m >n

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁 (6)

式中:σ1≥σ2≥…≥σp ≥…≥σr≥0(p=1,2,…,r),
为矩阵X 的全部非零奇异值,若矩阵S 为行满秩或列满秩

矩阵,则r=minm,n  ,若矩阵S不满秩,则r=rank(X)。

  

矩阵S 中前几个值较大,包含了矩阵X 的全部信息。
通过保留奇异值矩阵S 的前k 个最大的奇异值,将信

号矩阵X 降维到更低维度的信号矩阵Xk:

Xk =UkSkVT
k (7)

式中:Uk 是左奇异矩阵U 中前k列构成的矩阵,Sk 是对角

矩阵S中前k个最大的奇异值构成的对角矩阵,Vk 是右奇

异矩阵V 中前k行构成的矩阵。
在降维后的信号矩阵Xk 当中,奇异值按大小递减排

列,较小的奇异值对应的成分是噪声信息,将较小的奇异值

置零或只保留前面部分奇异值。在本文中,选择保留的奇

异值数量为k=20,保留的k 个奇异值包含了信号能量,
后续的奇异值对应信号的噪声分量,k 的大小决定了控制

去噪的程度,以得到去除后的信号矩阵Xk,denoised,实现对信

号的去噪效果。之后使用去噪后的信号矩阵Xk,denoised 和保

留的矩阵Uk 和Vk 重新构建信号,得到最终的去噪信号矩

阵Xdenoised:

Xdenoised =UkSk,denoisedVT
k (8)

其中,Sk,denoised 是Sk 中保留了较大奇异值对应的对角

矩阵。
图1展示了不同调制信号在信噪比为0

 

dB条件下原

始信号与经过奇异值分解去噪之后的效果图。

3 调制模型结构

  在SVD对信号去噪处理基础上,构建了一种基于深度

学习的自动调制识别模型,通过融合不同网络结构的优势,
实现对无线通信信号调制方式的精确识别。该模型由卷积

神经网络模块、SE模块、循环神经网络(recurrent
 

neural
 

network,RNN)及全连接深度网络模块构成,其网络结构

如图2所示。无线电信号样本的I/Q分量可以看作时空特

征的表示,所以通过构建CNN结构提取信号I/Q分量的

空间特征,加入SE模块进一步提取通道信息特征。将
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图1 调制信号去噪前后对比

Fig.1 Comparison
 

of
 

modulation
 

signal
 

before
 

and
 

after
 

denoising

图2 调制识别网络结构

Fig.2 Modulation
 

recognition
 

network
 

structure

RNN中的门控循环单元(gated
 

recurrent
 

units,GRU)和
LSTM结合用以提取信号的时间序列特征,利用 CNN、

GRU和LSTM的互补性及其相互的协同作用尽可能提取

信号的时空特征,以提高对调制信号的识别准确率,最后

的分类识别由全连接层网络完成。

3.1 多通道特征提取

  接收的调制信号为同相和正交分量,尽管他们彼此正

交,但因为信号的幅度和相位特征影响其正交关系,使得

两个通道出现差异,因此考虑将输入的基带I/Q无线电信

号分为单独的I/Q通道、I通道和Q通道来充分提取信号

·411·
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的数据特征。CNN的优势在于局部特征信息的提取,通过

设定多层CNN对输入数据进行卷积运算,随着CNN层的

卷积核逐步增加,实现了对数据深层特征的提取。在构造

的CNN中采用二维卷积层网络Conv1D1_1提取I/Q通道

的空间特征,其卷积核数量设定为32,大小为2×8,并采用

Relu激活函数来提高非线性映射能力。Conv1D1_2和

Conv1D1_3分别表示提取I通道和Q通道的一维卷积层,
卷积核数量为32,长度为8,在利用一维卷积层提取空间特

征的同时加深信号之间的特征融合[15],并尽可能地提取

I/Q信号各分量的隐藏瞬时特征,同样采用 Relu激活函

数。然后将Conv1D1_2及Conv1D1_3两个卷积层进行拼

接形成新的特征图作为下一个卷积层网络的输入。对拼

接后的特征图进行二维卷积即卷积层Conv2D1_4,卷积核

数量为50,大小为1×8,通过进一步卷积来提取特征。其

卷积输出结果与第一层卷积层网络输出进行合并以丰富

特征,最后,利用卷积层Conv2D1_5对拼接后的特征进行

二维卷积,卷积层Conv2D1_5的卷积核数量为100,大小为

2×5。通过对输入数据利用不同大小的卷积核对多通道

提取不同尺度的特征信息,有效利用I/Q通道、I通道及Q
通道的信息相关性及互补性。

为了加强CNN对特征信息的关注程度,以提高网络

性能。在构造的CNN网络中加入了通道注意力机制即

SE模块,如图1的SE模块,这种注意力机制包括挤压与

激励两个部分。挤压部分也是指全局信息的嵌入,因为输

入特征中信号的学习过滤器使用局部感受野来操作,输出

U 的每个单元无法利用该区域之外的上下文信息[11]。将

全局空间信息压缩并通过全局平均池化生成通道统计数

据,统计量z∈ℝC 通过空间维度H×W 缩小U 生成,z的

第c个元素表示为:

zc =Fsq uc  =
1

H ×W∑
H

i=1
∑
W

j=1
uc(i,j) (9)

z的每个元素对应变换输出U 的全局感受野。
激励部分通过两个全连接层的维度变换来学习通道

之间的非线性交互,利用学习获得的权重调整特征图,来
提高网络的表示能力。

3.2 时间特征提取和分类

  RNN 在 时 序 数 据 处 理 能 力 方 面 有 很 大 的 优 势,

LSTM[16]和GRU[17]都属于改进的RNN。当RNN展开为

深度前馈神经网络时,梯度可能会消失,从而导致RNN无

法捕获输入时间序列的长期依赖性。GRU和LSTM作为

RNN特定结构的变体,本质上为克服这一缺点产生,在处

理时间序列问题方面表现出较强的能力。基于信号样本

的时间特性,LSTM 对其具有长期依赖性,在不同时间节

点的动 态 变 化 特 征 可 以 避 免 梯 度 消 失。GRU 相 较 于

LSTM,计算参数和训练时间有所减少且收敛速度加快,整
体性能有所提升。因此考虑将通过CNN结构捕获的空间

特征输入到 GRU-LSTM 组合结构中提取其中的时序特

征,在减少模型计算量的同时能较为完整地提取时间序列

特征信息。
基本的LSTM 模型由输入门、遗忘门、任意数量的隐

藏层和输出门构成,如图3所示。

图3 LSTM基本结构

Fig.3 LSTM
 

basic
 

structure

其中,输入门决定更新的值,其神经元的数量由输入

数据的特征数量决定,遗忘门决定是否是部分还是完全忘

记之前学习的信息,输出门决定最终输出内容。执行步骤

表示为:

ft =σ(Wf·[ht-1,xt]+bf) (10)
式中:Wf 表示权重矩阵,ht-1 是前一个时间段的输出,xt

表示当 前 输 入,bf 表 示 遗 忘 门 偏 差 向 量。输 入 通 过

sigmoid激活函数σ 进行处理并投影到[0,1]范围内,选择

数据以保留先前的单元状态或删除数据。

it =σ(Wi·[ht-1,xt]+bi) (11)
式中:it 表示输入门,同样地,Wi 表示权重矩阵,bi 表示偏

差向量。

gt=tanh(Wg[ht-1,xt]+bg) (12)

ct =ft*ct-1+it*gt (13)
式中:gt 表示候选单元,将输入数据通过tanh函数投影到

[-1,1]范围,计算输入门的候选值即gt,Wg 表示权重矩

阵,bg 表示偏差向量,ct 是新的单元状态,ct-1表示前一时

间段学习的信息,*表示哈达玛积,即逐元素相乘。

ot =σ(Wo[ht-1,xt]+bo) (14)

ht =ot*tanh(ct) (15)
式中:ot 是输出门,决定模型的输出,ht 表示隐藏状态,其
输出由sigmoid和tanh激活函数决定。Wo 表示权重矩阵,

bo 表示偏差向量。
与LSTM相比,GRU的优势是网络复杂性减小,缩短

了网络训练时间,减少了所需的计算资源。GRU利用网

络神经元内的门,由更新门、重置门和输出门构成,如图4
所示。

GRU将LSTM的遗忘门和输入门合并为更新门,并
且合并了数据单元状态和隐藏状态,因此整体结构比

LSTM更简单。其执行步骤表示如下:

rt =σ(Wr·[ht-1,xt]) (16)

zt =σ(Wz·[ht-1,xt]) (17)

h
~

t=tanh(W·[rt*ht-1,xt]) (18)
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图4 GRU基本结构

Fig.4 GRU
 

basic
 

structure

ht = (1-zt)*ht-1+zt*h
~

t (19)
式中:rt 是重置门,将新的输入信息与之前的记忆相结合,

zt 是更新门,控制先前输入保留的数据量,从而允许网络

更长时间地保留信息,同时也可以更新隐藏层的状态即

h
~

t,并减少了网络参数。ht-1表示先前的输出,xt 是当前输

入,ht 是输出门,σ表示sigmoid激活函数,取0~1之间的

值,利于数据的遗忘和保留,
 

*表示哈达玛积,即逐元素

相乘。
在本文构造的时间特征提取结构中,将128个单元的

GRU和64个单元的LSTM 结合构成 GRU-LSTM 混合

模型,利用LSTM
 

的长时间记忆能力和GRU处理短时间

依赖关系的优势,更好地提取输入信号的时间序列特征。

GRU因为结构相对简单,且计算效率高,与LSTM复杂的

门机制组成相比,平衡了计算效率,也增强了其记忆能力

的互补性。此外,GRU-LSTM 的混合结构可以减少过拟

合,使模型具备更好的适应能力,同时,在面对输入的复杂

时间序列数据时,GRU-LSTM 模型能够更灵活地选择合

适的门机制,以适应不同的需求。
采用两个具有128个神经元的全连接层,将LSTM层

的输出映射到新的特征分类空间,来加深网络,并使用缩

放指数线性单元(scaled
 

exponential
 

linear
 

units,selu)激
活[18],如式(20)所示,selu激活函数可以进行自我归一化,
降低了梯度消失的概率,提高了训练效率和稳定性。由于

selu激活函数能保持激活值的均值和方差恒定,使得梯度

流动更加稳定,因此可以加速模型的收敛。最后的Dense
层网络对调制信号进行分类,利用softmax激活函数将其

转换为概率分布,使其适用于多分类分布的目标预测,输
出分类结果。

selu(x)=λ
x, x>0
αex -α, x≤0 (20)

4 实验数据集与仿真环境

  此实验采用的数据集是使用GNU无线电生成的调制

数据集RadioML2016.10a与RadioML2016.10b。数据集

RadioML2016.10a的详细参数如表1所示。RadioML2016.10b
包含1

 

200
 

000个信号样本和除模拟调制方式AM-SSB的

10种调制信号,是数据集RadioML2016.10a的扩展版,两
者都是在类似于实际环境的情况下生成的。将实验的数

据集按照6∶2∶2的比例划分为训练集、验证集和测试集。
模型训练批量大小(batch

 

size)为1
 

024,优化器是Adam,
损失函数是分类交叉熵。当实验验证在50个epoch内没

有减少时,则停止训练,训练好模型将以最小的验证损失

保存。实验的仿真环境内容如表2所示。

表1 RadioML2016.10数据集

Table
 

1 RadioML2016.10
 

dataset

数据集 GNU无线电生成

调制格式

数字调制格式:8PSK、BPSK、CPFSK、

GFSK、
 

PAM4、
 

16QAM、64QAM、QPSK;
模拟调制格式:AM-DSB、AM-SSB、WBFM

数据格式/维度 同相正交分量(IQ)/2×128
样本长度 128
样本总量 220

 

000
采样率 128

 

μs
符号调制率 8
信噪比范围 -20∶2∶18

 

dB

信道环境
多径衰落、中心频率偏移、加性

高斯白噪声、采样率偏移等

表2 实验仿真环境

Table
 

2 Experimental
 

simulation
 

environment

配置内容 配置参数

硬件配置
Intel(R)

 

Core(TM)
 

i5-12490F;

NVIDIA
 

GeForce
 

RTX
 

3060
内存 32

 

GB
操作系统 Windows

 

10专业版

深度学习框架 Keras2.9.0

5 实验结果讨论

  RadioML2016.10a不同信噪比下各类调制信号的调

制分类识别精度如图5所示。随着信噪比的不断提高,除
AM-DSB和 WBFM外,各类调制信号的识别准确率在不

断上升直至平稳,平稳之后的波动范围较小。调制信号

CPFSK、GFSK、PAM4都逐渐达到了100%的识别准确

率,QPSK、BPSK和8PSK的识别精度接近100%。因为

AM-DSB和 WBFM在静默期时信号几乎为零,在此期间,

WBFM作为语音信号本身是没有内容的,网络是对无效信

号进行分类的,所以识别精度无法达到理想效果。此外,
本文改进的网络模型也提高了16QAM和64QAM的识别

精度,使得其识别精度在18
 

dB下都达到了90%以上,两
者的时间序列数据很类似,因此在分类过程中很容易受到

噪声影响。
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图5 不同SNR下每类调制信号的分类精度

Fig.5 Classification
 

accuracy
 

of
 

each
 

type
 

of
 

modulation
 

signal
 

under
 

different
 

SNR

图6展示了训练损失和验证误差的过程,图中给出了

100个epoch内的损失和误差。从图中可以看出,整个训

练过程的损失逐渐下降直至平稳。模型在进行训练期间,
会设置提早停止训练,这是因为神经网络训练时性能可能

会逐渐慢慢下降,提前停止训练就是为了让网络模型的有

效性提高,也是为了保证神经网络映射的能力不会过度拟

合。在验证数据集的泛化误差开始增大时停止训练,可以

有效减少过拟合,并提高神经网络的泛化能力。

图6 训练和验证损失过程

Fig.6 Training
 

and
 

validation
 

loss
 

process

5.1 对比实验结果

  图7展示了数据集RadioML2016.10a和RadioML2016.10b
与其他网络模型调制识别精度的对比结果。对比模型选

取了以下几种模型:

CGDNet[19]:从输入的原始信号中提取特征,由CNN、

GRU和DNN组合的网络结构,CNN由三层滤波器个数

为50的卷积层串联形成,GRU 学习信号的时间特征,

DNN进行分类;

CNN1[6]:CNN结构由两个卷积层和两个密集全连接

层组成,密集层大小为128,由n 类神经元组成,各层均使

  

图7 不同模型识别准确率比较

Fig.7 Comparison
 

of
 

recognition
 

accuracy
 

of
 

different
 

models

用Relu激活函数;

CNN2[20]:由4个卷积层和2个密集全连接层组成,模
型复杂度较低且训练时间较短;

IC-AMCNet[21]:由4层卷积层、最大池化层和全连接

层组成,在前2个卷积层和第4个卷积层后加入最大池化

层,以减少学习参数量,还加入Flatten层将二维矩阵转换

为向量;

LSTM[22]:将时域调制信号的幅度和相位作为输入,
由两层128个单元的LSTM组成,softmax层进行分类;

MCNET[1]:利用最大池化层进行下采样,由6个非对

称核的卷积块执行,同时减少参数,部署跳越连接以防止

梯度消失问题;

CGDNN[23]:由 参 数 估 计 器、参 数 变 换 器、CNN 和

GRU组合形成的模型,将经过参数估计和变换后的数据
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输入CNN中,CNN由75个卷积核和25个卷积核的卷积

层组成,GRU有128个单元,为了压缩模型,采用网络修剪

方法以减少冗余;

ResNet[24]:两层256个滤波器和两层80个滤波器的

卷积层组成,第一层的输出转发到后两层以此缓解梯度消

失问题;

MCLDNN[25]:利用CNN形成多通道特征提取,采用

两个LSTM网络层提取时间信息,FC层进行分类识别。
从图中的对比结果中可以明显看出本文实验设计的自

动调制识别网络模型的整体平均分类识别准确率要高于其

他 网 络 模 型,从 -14
 

dB 开 始,本 文 的 模 型 对

RadioML2016.10a和RadioML2016.10b两者的识别精度值

相对于其他模型在逐渐增大,随着信噪比的增加逐渐趋于

平稳。其中,RadioML2016.10a的最大识别准确率达到了

93.36%,RadioML2016.10b 的 最 大 识 别 准 确 率 达 到

93.79%,在-8
 

dB时,两者的识别精度都达到了40%以上。
不管是整体识别准确率还是低信噪比下的识别准确率,都
表明了本文构造的网络模型在两个数据集都表现良好。

表3展示了两类数据集关于模型总参数量、训练时间

和整体的平均调制识别准确率的对比。本文的算法结构

较其他大部分算法的训练周期要长一点,但整体识别精度

得到了大幅度的提升,模型参数量与 CNN1、CNN2、IC-
AMCNet、ResNet及 MCLDNN相比也相对减少了许多。
因此,训练时间的差异是可以被接受的,以延长训练时间

的代价获得了更好的识别精度,从整体性能方面证明了本

文构造深度学习网络模型的有效性。

表3 模型性能比较

Table
 

3 Model
 

performance
 

comparison

框架类型

RadioML2016.10a RadioML2016.10b

总参数量
训练时间

(s/周期)
平均识别

准确率/%
总参数量

训练时间

(s/周期)
平均识别

准确率/%
Ours 261

 

410 10 62.28
 

261
 

281 53 64.63
CGDNet 124

 

933 5 50.01
 

124
 

676 27 60.56
CNN1 1

 

592
 

383 2 55.50
 

1
 

592
 

126 13 58.77
CNN2 858

 

123 2 55.54
 

857
 

994 67 60.43
IC-AMCNet 1

 

264
 

011 3 56.80
 

1
 

263
 

882 19 62.40
LSTM 201

 

099 7 57.78
 

200
 

970 38 63.51
MCNET 121

 

611 20 56.56
 

121
 

226 110 59.56
CGDNN 71

 

871 3 59.90 71
 

742 33 63.85
ResNet 3

 

098
 

283 20 54.46 3
 

098
 

154 106 60.94
MCLDNN 406

 

199 13 61.70 406
 

070 68 63.76

5.2 去噪效果分析

  表4比较了RadioML2016.10a在低信噪比-12、-10、

  

-8、-6、-4、-2和0
 

dB下不同模型的分类识别结果。
从表4内数据可以看出,本文的模型与其他模型相比,

  
表4 低信噪比下RadioML2016.10a不同模型的调制识别结果

Table
 

4 Modulation
 

recognition
 

results
 

of
 

different
 

models
 

of
 

RadioML2016.10a
 

under
 

low
 

signal-to-noise
 

ratio

框架类型
识别准确率/%

-12
 

dB -10
 

dB -8
 

dB -6
 

dB -4
 

dB -2
 

dB 0
 

dB
Ours 20.05 27.72 42.09 58.32 69.77 82.73 89.86
CGDNet 16.09 23.68 33.27 49.82 62.23 72.68 78.32
CNN1 16.81 25.14 38.50 55.04 64.63 75.05 80.32
CNN2 15.14 21.55 34.64 54.68 68.41 76.95 81.68

IC-AMCNet 13.00 20.32 32.68 52.09 65.00 74.77 81.27
LSTM 16.64 23.18 35.50 50.27 59.41 71.50 80.18
MCNET 15.00 22.41 37.64 53.95 63.41 73.36 78.45
CDGNN 18.41 26.18 39.45 52.64 65.69 76.91 85.68
ResNet 12.41 20.95 33.50 47.59 59.05 69.77 75.86
MCLDNN 15.00 22.91 39.36 58.77 70.59 81.22 87.95
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识别精度在低信噪比下有不同程度的提升,识别精度分别

最大提高了7.64%、7.4%、9.41%、12.96%、14%。尽管

在-6
 

dB和-4
 

dB时分别低于 MCLDNN模型0.45%和

0.82%,但整体提升效果是比较良好的,也证明了奇异值

分解对调制信号降噪的有效。
如图8所示,显示了 RadioML2016.10a在信噪比为

0
 

dB下各种网络模型的混淆矩阵。混淆矩阵是指不同调制

信号的错误分类情况,如果预测精度的结果越高,那么对角

线结果就越高,对应的蓝色深度也越深,表示了预测标签与

实际标签的一致程度,对角线的结果对应为调制类型的识

别准确率。在RadioML2016.10a中,AM-DSB与 WBFM两

类调制信号因为调制信息易丢失所以很容易导致错误分

类,从图中可以看出,本文的模型与ResNet相比,对两者的

预测精度是更高的。较其他模型而言,对8PSK的预测精度

也得到了不同程度的提升,最大与CGDNet模型相比提升了

24%。此外,QAM16和QAM64由于其具有重叠的星座映

射,在低信噪比下的噪声环境干扰也很容易造成错误识别。
本文构造的网络模型大大减少了调制信号 QAM16和

QAM64之间的混淆,两类调制类型的识别准确率都达到了

90%以上,这明显优于其他模型。

图8 不同框架在0
 

dB的混淆矩阵对比

Fig.8 Confusion
 

matrix
 

comparison
 

of
 

different
 

frameworks
 

at
 

0
 

dB
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6 结  论

  针对低信噪比下的噪声环境干扰导致调制信号分类

识别精度无法提高的问题,本文提出了一种基于奇异值分

解去噪的神经网络模型。该模型首先利用SVD对时间序

列信号进行降维和去噪处理,保留信号的特征奇异值,通
过重构获得清晰的信号。随后,将经去噪后的调制信号作

为网络模型的输入,利用新构造的神经网络模型对其进行

特征提取和分类识别。本文提出的网络模型由CNN、SE
模块和GRU-LSTM组成。模型将输入的I/Q序列信号分

为多通道输入,利用CNN网络的卷积层分别提取3个通

道的空间特征,增强信息互补性[26],然后,用SE模块加强

CNN对特征信息提取的关注。接着,使用GRU-LSTM 结

构捕捉信号的时间序列特征,最后通过全连接层网络实现

分类识别。实验结果表明,本文算法提高了低信噪比下对

调制信号的识别精度,并在减少模型参数量的同时提升了

整体的识别准确率。尤其是,该模型提高了对调制信号

QAM16和QAM64的区分,对两者的识别准确率均超过

90%。然而,该模型还无法 有 效 区 分 AM-DSB 信 号 和

WBFM信号,这将成为未来工作的关注点,同时,也计划探

索融合多种特征的方法提升模型在低信噪比下对调制信

号的识别性能。
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