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摘 要:
 

在电网系统中,异常检测效率直接影响到系统维护成本,传统电网异常检测方法基于专家经验知识转化为固

定规则与阈值,存在一定的局限性。现有的异常检测研究多以窃电、设备故障为主要分析对象,对过流异常的分析不

足。本文针对过流异常的特性,分析了传统经验规则存在的问题与缺陷,通过特征工程确定了特征量,提出了基于

XGBoost的电网过流异常检测模型。通过实验数据测试与评估,本文模型在5折交叉验证中F1分数最低值相较于传

统规则提升了19.2%,平均值相较于传统规则提升了15.1%,各项实验指标均优于基于传统经验规则的检测方法,且
没有出现明显的性能差异,证明了模型的检测效果。与异常检测常用的其他机器方法对比,本文模型的F1分数提升

了6.4%至8.7%,稳定性及准确性均有优势。通过训练数据远少于测试数据的极端情况测试以及对模型进行的可解

释性分析表明,本文模型具有较高的透明度、可信度,同时具有良好的泛化性能,可以有效支撑在实际环境中推广应用

于过流异常检测。
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Abstract:Traditional
 

power
 

grid
 

anomaly
 

detection
 

methods
 

rely
 

on
 

converting
 

expert
 

knowledge
 

into
 

fixed
 

rules
 

and
 

thresholds,
 

which
 

cannot
 

meet
 

the
 

demands
 

of
 

rapidly
 

evolving
 

power
 

grid
 

systems.
 

The
 

current
 

anomaly
 

detection
 

research
 

mainly
 

focuses
 

on
 

electricity
 

theft
 

and
 

equipment
 

failures
 

as
 

the
 

main
 

analysis
 

objects,
 

but
 

the
 

analysis
 

of
 

overcurrent
 

anomalies
 

is
 

insufficient.
 

This
 

paper
 

analyzes
 

the
 

characteristics
 

of
 

overcurrent
 

anomalies,
 

and
 

discusses
 

the
 

problems
 

and
 

deficiencies
 

of
 

traditional
 

experience-based
 

rules.
 

Through
 

feature
 

engineering,
 

we
 

determines
 

the
 

feature
 

variables,
 

and
 

proposes
 

an
 

XGBoost-based
 

power
 

grid
 

overcurrent
 

anomaly
 

detection
 

model.
 

Through
 

experimental
 

data
 

testing
 

and
 

evaluation,
 

the
 

indicators
 

of
 

the
 

model
 

proposed
 

in
 

this
 

paper
 

outperform
 

the
 

detection
 

methods
 

based
 

on
 

traditional
 

experience-based
 

rules.
 

In
 

the
 

5-fold
 

cross-validation,
 

the
 

minimum
 

F1
 

score
 

of
 

the
 

proposed
 

model
 

showed
 

a
 

19.2%
 

improvement
 

compared
 

to
 

traditional
 

rules,
 

while
 

the
 

average
 

value
 

demonstrated
 

a
 

15.1%
 

improvement.
 

The
 

experimental
 

results
 

did
 

not
 

show
 

significant
 

performance
 

differences,
 

confirming
 

the
 

effectiveness
 

of
 

the
 

model
 

in
 

anomaly
 

detection.
 

Compared
 

to
 

other
 

commonly
 

used
 

machine
 

methods
 

for
 

anomaly
 

detection,
 

the
 

proposed
 

model
 

in
 

this
 

paper
 

achieved
 

an
 

improvement
 

of
 

6.4%
 

to
 

8.7%
 

in
 

F1
 

score,
 

demonstrating
 

advantages
 

in
 

terms
 

of
 

stability
 

and
 

accuracy.
 

The
 

extreme
 

case
 

testing
 

with
 

training
 

data
 

significantly
 

less
 

than
 

the
 

testing
 

data,
 

along
 

with
 

the
 

conducted
 

interpretability
 

analysis
 

of
 

the
 

model,
 

demonstrated
 

that
 

the
 

proposed
 

model
 

exhibits
 

high
 

transparency
 

and
 

reliability.
 

Moreover,
 

it
 

shows
 

good
 

generalization
 

performance,
 

making
 

it
 

suitable
 

for
 

effective
 

deployment
 

in
 

real-world
 

environments
 

for
 

overcurrent
 

anomaly
 

detection.
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0 引  言

  21世纪以来,随着电网系统的飞速发展,异常检测变

得越来越重要。及时、准确地检测出电网异常状态,是维持

电网系统稳定、健康运行不可或缺的重要环节。随着智能

化电网建设发展以及数据存储技术发展,目前电网系统采
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集并保存了海量的监测数据[1],使电力数据分析不再局限

于现场采集测试,机器学习在分析电网数据中开始广泛

应用[2]。
目前国内外学者对电力数据异常检测方法研究主要分

为两大类[3]:1)基于专家经验知识的方法,将专家的异常检

测知识与长期积累的经验转化为固定的规则与阈值,具有

很强的主观性;2)基于机器学习的方法[4],对电网检测数据

分析预测,从而完成异常检测。主要分为 K近邻算法(k-
nearest

 

neighbors,KNN)[5]、支持向量机(support
 

vector
 

machine,SVM)[6]、随机森林[7]等,这类方法的特征选择直

接影响异常检测的最终效果,需要针对具体数据人工设计

特征模型。文献[5]提出了一种加权 KNN数据异常检测

方法,适用智能电网中的高维数据;文献[6]针对坏数据、负
荷突变和单相接地等类型的异常,提出了一种基于支持向

量机的多类型异常检测方法。上述机器学习方法多针对电

力系统自身异常故障,对用户超容过流用电导致的用户侧

异常研究较少。
在各种异常类型中,过流异常不同于其他异常故障,电

网系统本身具有一定的过电流能力[8],短时间、非极大值的

过流对电网影响很小,无需特别处理,而持续过流或者突发

极大值过流会导致过度发热,存在火灾或设备损坏风险。
基于这种特性,为了充分利用设备自身特性,减少额外的检

修人力资源浪费,电网系统中仍使用基于专家经验知识的

方法,设置特定规则来检测异常。由于电网数据爆发式增

长[9],规模不断扩大,传统基于经验知识的规则与固定阈值

主观性较强,通用性较为薄弱,存在一定的虚报漏报现象。
针对以上问题,文中以实例分析了传统过流异常检测规则

局限性,引入极致梯度提升树
 

(extreme
 

gradient
 

boosting,

XGBoost)算法[10],建立电网过流异常检测模型,优化机器

学习预测效果。最后,基于真实案例数据,通过实验对比,
验证了文中模型在电网过流异常检测时的可靠性和有

效性。

1 电网过流异常状态检测分析
 

  目前过流异常检测规则为出现连续1
 

h(每日96点曲

线中连续4个点)电流数值大于电能表最大电流或互感器

额定电流时,记为过流异常。该规则基于传统经验知识,在
多数情况下可以较好地判断过流异常,但随着电网规模越

来越大,不同用户的用电情况各不相同,仍有部分异常并不

能准确判断。
根据某市用户过流异常统计及每日电流曲线数据,可

以发现存在部分用户存在电流数据虚报漏报现象,如图1、

2所示。在图1(a)中,该用户接入类型为直接接入式,过流

阈值为60
 

A,可以看到该户在某一天实际存在持续过流情

况,但因传统经验规则连续4点判断限制,并未报告异常,
存在安全隐患;图1(b)中,该用户某一天出现了若干次极

大值,远远超过设定阈值60
 

A,同样并未记为异常。

图1 传统规则下漏报电流曲线情况

Fig.1 A
 

user’s
 

omission
 

reporting
 

under
 

traditional
 

rules

如图2所示,该用户某日内短时间达到过流阈值,但其

前后长时间内并未再出现过流现象,这类情况可以不用额

外处理,利用电力设备自身的过电流能力[11],节约检修人

力资源。

图2 传统规则下虚报电流曲线情况

Fig.2 A
 

user’s
 

false
 

reporting
 

under
 

traditional
 

rules

通过现有数据分析发现,在大部分的过流异常情况下,
用户都存在三相电流不平衡问题,往往出现过流情况的某

相电与其他两相存在较大差值,如图3某用户三相电过流

情况所示。为了提升模型泛化性能,挖掘数据潜在规律,在
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检测过流异常时,可以考虑引入三相不平衡度参数作为特

征量。

图3 某用户三相电过流情况

Fig.3 A
 

user's
 

three-phase
 

power
 

overcurrent
 

situation

2 电网过流异常检测模型

  本文构建电网过流异常检测模型流程分为特征工程、
模型分析与训练、模型评估、可解释性分析4个部分。

2.1 特征工程

  模型特征指机器学习模型在训练和推断过程中用来进

行预测的输入。特征工程是机器学习流程中重要的组成部

分,是从原始数据中提取和转换变量作为模型特征的过程。
良好的特征工程可以降低模型复杂度,提高模型性能。本

文特征工程主要分为数据预处理、特征选择两部分:

1)数据预处理:现有电网数据为数据库中提取,分为普

通用户每日电流曲线数据和已记录的过流异常用户详细信

息。数据中存在部分缺失项,以及例如户名等文字类型数

据、户号等无具体数值大小意义的数字,需要通过处理后才

能开始训练。对电网数据的预处理主要包括缺失数据处理

和数据转换:对电流数据中的缺失值,参考现有用电采集系

统研判规则,采用以下方法补全:当连续时间内缺点数小于

等于2个点时,取该时间点前4日的平均值补全;当连续时

间内缺点数大于2个点时,取该点前2日的电流数据曲线

近似拟合补全。对于单日缺失数据超过1/4(24个点)的数

据,作删除处理,对三相电表的用户数据中A、B、C相电流

单独作为一条数据。对用户类型、接入类型等离散型特征,
采用独热编码[12]处理,可以避免标签编码中的数值假设问

题[13]影响训练效果。

2)特征选择:由于电网数据较为详细,部分指标与异常

判断无明显关联,无关的特征指标输入会消耗训练资源,增
大模型误差。因此,首先需要利用相关性分析[14]筛选出与

电流信息关联性强的指标,合理选择特征,剔除无关数据。
通过上节数据分析,在模型训练时将加入三相不平衡度[15]

特征,实验时与基准性能进行对比,观察该特征量对基准性

能的影响。

2.2 基于XGBoost的电网过流异常检测模型

  XGBoost是 梯 度 提 升 决 策 树[16](gradient
 

boosting
 

decision
 

tree,GBDT)算法的一种高效实现。XGBoost使用

决策树作为基础模型,核心是Boosting思想,多个决策树

共同决策,后一棵决策树的生成将之前所有树的偏差考虑

在内,以此达到整个模型效果提升。XGBoost模型可以定

义为:
 

y︵i =∑
K

k+1
fk(xi),fk ∈F (1)

式中:F 代表分类回归树(classification
 

and
 

regression
 

tree,

CART)空间,fk 为基学习器,fk(xi)代表第k 棵树对样

本xi 的预测分数,
 

y︵i 表示预测结果。

XGBoost模型的目标函数定义如下:

Obj(θ)=∑
n

i=1
l(yi

,
 

y︵i)+∑
K

k=1
Ω(fk) (2)

Ω(f)=γT+
1
2λ‖ω‖

2 (3)

式中:l(yi
,

 

y︵i)表示第i个样本预测偏差;Ω(f)表示模

型复杂度;T 表示决策树数量,ω 表示权重,γ 和λ 为超

参数。
设

 

y︵i(t)为第t次迭代时预测第i个样本结果,则t棵树

的目标函数为:

Objt(θ)=∑
n

i=1
l(yi

,
 

y︵i(t-1))+ft(xi))+Ω(ft)(4)

对公式二阶泰勒展开可以得到:

Objt(θ) ≈ ∑
n

i=1

[l(yi
,

 

y︵i(t-1)) + (gifi(xi) +

1
2hift

2(xi)]+Ω(ft) (5)

式中:gi 和hi 为损失函数的一阶偏导数和二阶偏导数,且

l(yi
,

 

y︵i(t-1))为常数项,可将目标函数表示为:

Objt(θ)=∑
T

j=1

[(∑
i∈Ij

gi)ωj+
1
2
(∑
i∈Ij

hi+λ)ωj
2]+γT

(6)
对式(5)求导,导数为0时可得到叶子结点权重ω*

j :

ω*
j = -

∑
i∈Ij

gi

∑
i∈Ij

hi+λ
(7)

将ω*
j 带入原目标函数即可得到新的目标函数:

Objt = -
1
2∑

T

j=1

(∑
i∈Ij

gi)2

∑
i∈Ij

hi+λ
+γT (8)

2.3 模型评估

  文中对模型效果评估采用5折交叉验证的方式,将数

据集随机分为5份数量相同的子集,轮流将其中一份作为

测试集,剩余4份作为训练集。交叉验证可以减少因样本

划分不同而引入的差别,使模型评估更加有效。
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由于在实际应用中会出现训练数据会远少于测试数据

的情况[17],为了更准确评估模型效果,实验时还将通过更

改数据集中训练集比例,模拟实际应用出现的极端情况,训
练集取值范围为[0.1,0.9],取值间隔0.1。

2.4 可解释性分析

  可解释性指的将模型的预测过程转化成具备逻辑关系

的规则的能力[18],即人类能够理解模型预测原因的程度。
在现实场景中,机器学习模型检测效果很好并不意味着可

以直接投入业务应用,在不了解模型是如何使用特征进行

预测的情况下,是无法对模型产生信任并对齐有效管理优

化的。对模型进行可解释性分析,可以提高模型的可信度

和透明度,对模型的泛化性能提供有力支持。
本文采用SHAP(Shapley

 

additive
 

explanations)对模

型进行可解释性分析。SHAP是一种模型无关的机器学习

解释方法[19],基于博弈论中Shapley值的概念,为每个输入

特征生成一个值,该值可以表示出这个特征如何参与预测

过程,如对预测结果产生积极或是负面影响等。

Shapley值是合作博弈论中的一个概念,它提供了一种

在参 与 贡 献 的 成 员 之 间 公 平 分 配 支 出 的 数 学 方 法。

Shapley值的形式化定义为:设N 为n个成员的集合,S 为

N 的任意子集,v(S)为各子集的获利,当任何情况下合作

比单人贡献要更有利时,每个人获得的利益φ_i(v)可以表

示为:

φ_i(v)=∑S∈N

[(|S|-1)! (n-|S|)! ]
n!

[v(S)-

v(S\{i})] (9)
式中:v(S)-v(S\{i})称为成员i在参与合作S中的边际

贡献,乘上加权因子后,即为成员i的Shapley值。

3 实验分析

3.1 数据集介绍

  本文中所有数据均来自某地区电网系统智能电表自动

采集后提取。由于目前过流异常检测流程为电网系统中记

录到异常数据后,派发工单由专业人员去现场确认是否真

实存在异常现象,故本文数据集采集用户范围为2024年1
月~2024年3月该地区派发的异常工单明细中涉及到的

所有用户,以及同区域、同用电类型的随机抽取部分用户,
记录时间为2024年1月~2024年3月。过流异常明细记

录表包含103条记录,57户不重复用户,涵盖了高压与低

压用户、直接接入式与经互感器接入式两种接入电网方式;
每日电流曲线表中包含28

 

700条记录,113户不重复用户

(包括过流异常明细表中记录的57户)。将所有现场核查

为过流异常的用户异常时间段数据标记为异常,其余数据

标记为正常。经过数据预处理后,得到过流数据1
 

181条,
正常数据27

 

090条,表1为数据预处理后的数据集概况,
其中记录日期数含义为:用户单日电流数据记一次,不区分

三相电流数据:

表1 数据集概况

Table
 

1 Overview
 

of
 

dataset
类型 样本总数 用户数 记录日期数

过流 1
 

181 57 103
正常 27

 

090 56 10
 

067
总计 28

 

271 113 10
 

170

  在原始数据中,如管理单位编号与管理单位名等数据

互为冗余参数,实际意义没有区别,因此去掉文字类的地址

与名称信息;编号本身无数字意义,为防止编号数值太大影

响模型训练效果,将各类编号与其他离散属性均通过独热

编码后作为特征量。将计算得到的三相电流不平衡度参数

作为特征量。实验表明,加入三相电流不平衡度特征后,模
型效果得到了提升。图4为原始数据与加入三相电流不平

衡特征后模型效果对比:

图4 加入特征前后训练效果对比

Fig.4 Comparison
 

of
 

training
 

effects
 

before
 

and
 

after
 

adding
 

features

图5为预训练模型特征重要性图(部分),为了直观比

较其他特征,图中略去每日96点电流数据特征。由图5可

以看出,管理单位编号、数据类型、单位编号、设备编号及用

户编号特征重要性值较低。考虑到数据样本实际情况以及

模型训练效果,最终选取三相电流不平衡度、接入类型和每

日电流数据作为特征输入。下文其他算法模型对比以此特

征输入为参考。

3.2 测试基准

  测试时根据传统经验规则分析数据,统计出传统规则

下检测效果,然后分别与异常检测中几种常用机器学习分

类算法进行比较,包括 KNN、SVM、随机森林[20]。确定相

关参数范围[21]后,使用网格搜索法获得最优参数,具体参

数如下:

1)KNN[22]:KNN的核心思想是如果一个样本在特征

空间中的K个最近邻的样本中的大多数属于某一类别,则
该样本也属于这个类别。参考文献[22],超参数 K值(n_

neighbors)取值范围为[1,10],取值间隔为1;距离度量P
(metric)的选择范围为:欧氏距离、曼哈顿距离、切比雪夫
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图5 部分特征重要性值

Fig.5 Partial
 

feature
 

importance
 

value

距离、闵可夫斯基距离。最终确定K值为5,距离度量为闵

可夫斯基距离。

2)SVM[23]:SVM的基本原理是寻找一个分割,将样本

空间一分 为 二。参 考 文 献[23],惩 罚 参 数 取 值 范 围 为

[0.001,0.01,0.1,1,10,100];核函数取值范围为:线性核

函数、多项式核函数、高斯核函数。最终确定惩罚参数10,
径向基核函数。

3)随机森林[24]:随机森林是一个包含多个决策树的分

类器,其输出的类别是由个别树输出类别的众数决定。参

考文献[24],超参数决策树的取值范围为[100,500],取值

间隔为100;树的最大深度为[10,30],取值间隔10。最终

确定树的数量为300,最大深度为10。

3.3 评价指标

  文中以F1分数[25]来评价过流异常分析方法。F1分

数是统计学中用来衡量二分类模型精确度的一种指标。

F1分数是精准率和召回率的调和平均数,指标定义如下:

P =
TP

TP+FP
(10)

R =
TP

TP+FN
(11)

F1=
2TP

2TP+FP+FN
(12)

式中:P表示精准率(查准率),R表示召回率(查全率),TP
为真阳性数量(实际意义为正确检测到的过流样本数);FP
假阳性数量(实际意义为未被检测出的过流样本数;FN表

示假阴性数量(实际意义为被检测为异常的正常样本数)。

3.4 过流异常检测模型结果分析

  图6为实例数据中传统规则经过统计计算后与文中模

型实验结果对比。
由图6(a)可以看出,在5折交叉验证情况下,传统规则

F1分数最低为0.767,最高为0.857,平均值为0.81;而

XGBoost模型F1分数最低为0.914,最高为0.95,平均值

为0.932,最低值相较于传统规则提升了19.2%,平均值相

较于传统规则提升了15.1%。同时,在5折交叉验证中各

图6 传统经验规则与文中模型实验结果对比

Fig.6 Comparison
 

of
 

traditional
 

empirical
 

rules
 

and
 

model
 

experimental
 

results

分数没有明显差异,说明该模型在不同的测试集与训练集

情况下具有良好的泛化性能。
由图6(b)可以看出,在训练集比例为0.1时,传统规

则F1分数明显变差,仅为0.702;而XGBoost模型在不同

训练集数据比例下整体较为稳定,训练集比例为0.1时F1
分数仍有0.872,相较于传统规则提升了24.2%,说明在训

练集数据极少情况下,XGBoost模型对过流异常的检测效

果明显好于传统经验规则。
图7为通过上文网格搜索法确定最优超参数后,其他

常用机器学习算法模型对比文中模型效果。经过计算,

KNN模型在5折交叉验证中平均F1分数为0.876,SVM
模型平均F1分数为0.857,随机森林模型平均F1分数为

0.863。测试效果表明,在5折交叉验证结果以及不同训练

集比例下实验,XGBoost模型效果相较其他常用机器学习

算法,提升了6.4%~8.7%。
图8为通过SHAP对模型可解释性分析的特征贡献

度绝对值蜂窝图,因96点电流数据贡献程度接近,为了便

于直观展示,图中仅展示2个点电流数据用以对比,其余电

流数据折叠显示。由图可以看出,在所有输入特征中,电流

数据对预测贡献程度最高,说明电流数值大小为判断是否
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图7 不同机器学习算法实验结果对比

Fig.7 Comparison
 

of
 

experimental
 

results
 

from
 

different
 

machine
 

learning
 

algorithms

过流的最基本依据;接入类型特征对预测贡献程度仅次于

电流数据总和,大于单点电流数据,而现实中接入类型不

同,变压器的过电流能力也不相同,在传统经验规则中,接
入类型直接决定了判断过流异常的阈值,因此模型判断时

该项特征重要程度较高。

图8 SHAP特征贡献程度分析蜂窝图

Fig.8 SHAP
 

feature
 

contribution
 

analysis
 

in
 

the
 

form
 

of
 

a
 

heatmap

图9为单个样本SHAP分析图,图中特征名左侧数值

为该特征实际值,“i0130”表示01:30时刻的电流采集值,
下同。该样本被模型检测为过流异常。该图直观表示了模

型做出预测的原因,每个特征量对预测结果的影响程度,

SHAP值为正表示该特征量对预测结果为正面影响。其

中:接入类型对判断结果影响最大,接入类型1表示该样本

为经互感器接入式用户;三相不平衡度达到了0.803;多个

点电流数据超过了6
 

A。结合所有特征输入后,模型检测

结果为异常。

图9 检测为过流异常的某样本SHAP分析

Fig.9 SHAP
 

analysis
 

of
 

a
 

sample
 

identified
 

as
 

an
 

overcurrent
 

anomaly

由可解释性分析可以看出,该模型做出决策的主要参

考特征基本符合经验知识,表示模型可信任程度较高;各个

特征量没有出现明显异常的重要性值,表示模型具有一定

的泛化性能,可以应用于实际场景。

4 结  论

  针对电网数据中过流异常检测的需求,本文分析了过

流异常的特性,实例验证了传统过流异常检测经验规则的

不足,通过特征工程确定了特征量,引入了基于 XGBoost
的电网过流异常检测模型。通过实验结果分析,在真实数

据集中,文中模型测试效果优于传统经验规则检测方法及

其他常用机器学习分类算法。交叉验证结果显示文中模型

过流异常检测性能稳定、准确,在不同数据集与测试集中体

现了良好的泛化性能;不同测试集数据比例实验结果显示,
文中模型在测试数据与训练数据极端不平衡情况下,仍具

有良好的检测效果。可解释性分析结果表明,文中模型透

明度与可信度较高,没有明显的异常特征比重,表示具有一

定的泛化性能,可以有效支撑在实际环境中代替传统规则

检测过流异常。
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