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摘 要:准确估计三元锂电池的荷电状态(SOC)是保障电动汽车安全稳定运行的基础。针对传统BP神经网络估计

精度不高,而RBF神经网络也容易陷入局部最优的问题,提出一种基于自适应麻雀搜索算法与RBF神经网络联合的

三元锂电池SOC估计方法。首先,对标准麻雀搜索算法进行改进,采用精英混沌反向机制初始化麻雀种群,采用柯

西-高斯变异策略优化麻雀种群中跟随者位置更新公式;然后,使用改进后的麻雀搜索算法对RBF神经网络的初始权

值和宽度参数进行寻优,以提升算法对SOC的估计精度;最后,基于三元锂电池的充放电实验数据进行模型验证。结

果表明,动态应力测试工况下,所提联合算法模型SOC估计均方根误差为0.694%,平均百分比误差为3.15%,能很

好的应用于三元锂电池SOC估计。
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Abstract:Accurately
 

estimating
 

the
 

state
 

of
 

charge
 

(SOC)
 

of
 

ternary
 

lithium
 

batteries
 

is
 

the
 

foundation
 

for
 

ensuring
 

the
 

safe
 

and
 

stable
 

operation
 

of
 

electric
 

vehicles.
 

In
 

response
 

to
 

the
 

problem
 

of
 

low
 

estimation
 

accuracy
 

of
 

traditional
 

BP
 

neural
 

networks
 

and
 

the
 

tendency
 

of
 

RBF
 

neural
 

networks
 

to
 

fall
 

into
 

local
 

optima,
 

this
 

paper
 

proposes
 

a
 

ternary
 

lithium
 

battery
 

SOC
 

estimation
 

method
 

based
 

on
 

the
 

combination
 

of
 

adaptive
 

sparrow
 

search
 

algorithm
 

and
 

RBF
 

neural
 

networks.
 

Firstly,
 

the
 

standard
 

sparrow
 

search
 

algorithm
 

is
 

improved
 

by
 

using
 

the
 

elite
 

chaos
 

reverse
 

mechanism
 

to
 

initialize
 

the
 

sparrow
 

population,
 

and
 

the
 

Cauchy
 

Gaussian
 

mutation
 

strategy
 

is
 

used
 

to
 

optimize
 

the
 

follower
 

position
 

update
 

formula
 

in
 

the
 

sparrow
 

population.
 

Then,
 

the
 

improved
 

sparrow
 

search
 

algorithm
 

is
 

used
 

to
 

optimize
 

the
 

initial
 

weight
 

and
 

width
 

parameters
 

of
 

the
 

RBF
 

neural
 

network
 

to
 

improve
 

the
 

algorithm's
 

estimation
 

accuracy
 

of
 

SOC.
 

Finally,
 

the
 

model
 

was
 

validated
 

based
 

on
 

the
 

charging
 

and
 

discharging
 

experimental
 

data
 

of
 

ternary
 

lithium
 

batteries.
 

The
 

results
 

show
 

that
 

under
 

dynamic
 

stress
 

testing
 

conditions,
 

the
 

proposed
 

joint
 

algorithm
 

model
 

has
 

a
 

root
 

mean
 

square
 

error
 

of
 

0.694%
 

and
 

an
 

average
 

percentage
 

error
 

of
 

3.15%
 

in
 

SOC
 

estimation,
 

which
 

can
 

be
 

well
 

applied
 

to
 

SOC
 

estimation
 

of
 

ternary
 

lithium
 

batteries.
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0 引  言
 

  对环境保护要求的不断提高以及近几年国际石油价格

的不断攀升,促进了电动汽车技术的研究与产业化发展[1]。
动力电池约占电动汽车成本的40%,是整车最重要的部件

之一。三元锂电池单体工作电压高、容量大且低温性能好,
成为目前主流的动力电池[2-4]。然而,其耐高温性和过充过

放性能较弱,给电动汽车的安全稳定运行带来不小挑战。
对三元锂电池的荷电状态进行实时精确估计有助于指导电

池组的均衡控制,防止电池过充过放,从而提升使用寿命。
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荷电状态(state
 

of
 

charge,
 

SOC)无法直接通过测量得

到,目前SOC估计方法主要包括安时积分法、开路电压法、
基于模型的估计方法以及神经网络法[5-6]。文献[7]综合考

虑了电池自放电老化、充放电效率及电池容量等因素对

SOC估计的影响,提出一种基于改进安时积分法的SOC
估计方法;文献[8]将安时积分法与开电压法相结合,进一

步提升SOC的估计精度。然而,安时积分法存在累积电流

测量误差,开路电压法需要长时间电池静置条件而难以满

足实时估计要求[9]。基于模型的SOC估计方法主要有卡

尔曼滤波法、粒子滤波法及 H无穷滤波法等[10]。文献[11]
通过最大似然估计判断误差新息分布的变化,进而更新误

差新息序列以自适应调整扩展卡尔曼滤波算法中的噪声协

方差矩阵;文献[12]通过差分进化算法实现了不同环境温

度下噪声协方差矩阵的自适应调节。基于模型的SOC估

计方法严重依赖对电池的精确建模以及对电池参数的准确

辨识[13-14],操作过程复杂繁琐。神经网络法不需要建立复

杂的电路模型,同时能够保证较高的估计精度。文献[15]
采用自适应学习率和动量学习因子改进了基于反向传播

(back
 

propagation,
 

BP)神 经 网 络 的 SOC 估 计 模 型;
文献[16]提出基于python编程的自适应动量项BP神经网

络,使算法的收敛速度提升了80%;文献[17]提出一种基

于改进灰狼优化算法优化BP神经网络的锂电池SOC估计

方法,显著提高了模型的估计精度。然而,基于BP神经网

络的SOC估计模型存在一定局限性,使得模型的估计性能

难以 进 一 步 提 升。径 向 基 函 数 (radial
 

basis
 

function,
 

RBF)神经网络作为局部逼近型网络,其逼近精度、收敛速

度及分类能力等方面均优于BP神经网络,但基于RBF神

经网络的SOC估计模型易陷入局部最优和收敛精度有待

提高的问题仍亟待解决。
因此,本文提出基于自适应麻雀搜索算法(adaptive

 

sparrow
 

search
 

algorithm,
 

ASSA)与RBF神经网络联合的

SOC 估 计 方 法。针 对 麻 雀 搜 索 算 法 (sparrow
 

search
 

algorithm,
 

SSA)初始种群随机生成导致算法收敛性能差

的问题,采用精英混沌反向学习初始化麻雀种群,增强算法

的全局搜索能力。针对SSA算法在迭代过程中种群多样

性骤降的问题,采用柯西-高斯变异策略对跟随者进行变

异,并通过余弦函数自适应调整变异范围,增加种群多样性

的同时加快算法的收敛过程。基于实验采集的数据对比分

析BP、RBF、SSA-RBF以及 ASSA-RBF
 

4种SOC估计模

型,结果表明所提 ASSA-RBF联合算法SOC估计模型具

有良好的准确性和鲁棒性。

1 基于RBF神经网络的SOC估计

1.1 RBF神经网络

  RBF神经网络是典型的前馈式局部逼近网络,具有3
层网络结构,包括输入层、隐藏层和输出层。输入层用于数

据传输,隐藏层的作用是通过激活函数把线性不可分的低

纬度向量映射成线性可分的高纬度向量[18],输出层用于对

传输过来的数据序列作加权处理[19]。因此,输入层到隐藏

层为非线性变化,隐藏层到输出层为线性变化,这样的网络

结构使得RBF神经网络适合处理非线性时间序列预测问

题,这对于三元锂电池SOC估计具有适用性。其拓扑结构

如图1所示。

图1 RBF神经网络拓扑结构

选取高斯核函数作为RBF神经网络隐藏层神经元的

激活函数,即:

K(‖x-xi‖)=exp[
-(‖x-xi‖)2

2σ2i
] (1)

式中:K 表示径向基函数;x 为输入的数据序列;xi 为隐

藏层第i个神经元核函数的聚类中心;σi为隐藏层第i个神

经元核函数的宽度参数,控制函数的径向作用范围。RBF
神经网络的输出为:

Y =∑
Q

m=1
ωm·K(‖x-xm‖) (2)

式中:Y 为网络输出;Q 为隐藏层神经元个数;ωm 为隐藏

层第m 个神经元与输出神经元之间的连接权值。

1.2 基于RBF的SOC估计模型

  锂电池的荷电状态是指在一定温度和充放电倍率下,
电池当前容量与额定容量之比,可以表示为:

SOC =
Cr

CN
(3)

式中:Cr 为电池的当前剩余容量;CN 为电池的最大可

用容量。
搭建基于RBF的SOC估计模型,以电压、电流作为模

型输入。输入数据序列中若是存在较大数值的数据,会削

弱数值较小数据对网络训练的效果,因此需要先对输入数

据进行归一化处理,整体的SOC估计流程如图2所示。
将实验采集的数据序列分为训练集和测试集。首先,

将训练集进行归一化后输入到模型中进行网络训练;然后,
将测试集进行归一化后输入到训练好的网络模型得到估计

的SOC值。

2 基于ASSA-RBF联合算法的SOC估计

  RBF网络的宽度参数和初始输出权值选取不当容易
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图2 基于RBF的SOC估计流程

导致算法陷入局部最优状态。采用改进后的SSA算法对

RBF网络的宽度参数和初始权值进行寻优,以提升SOC
的估计模型的精度和鲁棒性。

2.1 标准SSA算法

  群体智能优化算法是一类受到自然界生物群体行为和

智能启发的优化算法。这类算法通过模拟群体中个体之间

的交流、协作和竞争等行为,以寻找最优解或近似最优解。
文献[20]对鲸鱼优化算法进行了综述,针对算法收敛速度

慢和收敛精度低的问题,总结分析了算法的改进策略,但该

算法 在 求 解 多 目 标 优 化 问 题 时 的 能 力 仍 有 待 提 升。
文献[21]经过对比实验,证明SSA算法在各方面的性能要

远超包括鲸鱼优化算法在内的其他较为典型的群智能算法。

SSA算法是通过模拟麻雀觅食行为设计的一种启发

式搜索算法,通过不断更新发现者、跟随者和警戒者的位

置,逐步优化解的质量。其中,发现者是适应度较好的个

体,为跟随者提供搜索方向。其位置更新公式为:

Xt+1
i,j =

Xt
i,j·exp

-i
α×itermax  , R2<ST

Xt
i,j +Q·L, R2≥ST (4)

式中:t为当前迭代次数;Xt
i,j 为当前第i只麻雀在第j维

的位置;α ∈ (0,1)为随机数;itermax 为最大迭代次数;

R2∈ [0,1]为报警值;ST∈[0.5,1]为安全阈值;Q 为服

从正态分布的随机数;L 为1×dim的全1矩阵,其中dim
为麻雀位置信息维度。

跟随者会根据发现者提供的方向信息进行搜索,并逐

渐向发现者聚集。其位置更新公式为:

Xt+1
i,j =

Q·exp
Xt

worst-Xt
i,j

i2  , i>
n
2

Xt+1
P +|Xt

i,j -Xt+1
p |·A+·L,i≤

n
2

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

(5)

式中:Xt
worst 为当前全局最差适应度个体位置;Xt+1

P 为目前

最佳适应度个体位置;A 是一个1×dim的矩阵,随机设置

矩阵中每个元素的值为-1或1;A+=AT(AAT)-1。
种群中随机产生的警戒者会监视随时可能发生的危

险,以便及时提醒种群做出反捕食行为。其位置更新公

式为:

Xt+1
i,j =

Xt
best+β·|Xt

i,j -Xt
beat|, fi≠fb

Xt
i,j +k·

Xt
i,j -Xt

worst

|fi-fw|+ε  , fi =fb 
(6)

式中:Xt
best为当前全局最佳适应度个体位置;β为服从标准

正态分布的控制步长;k∈ [-1,1]为随机数;ε为极小常

数,避免分母为0;fi 为第i只麻雀适应度值;fb 为目前最

佳适用度值;fw 为目前最差适应度值。

2.2 SSA算法改进

  目前对SSA算法的改进方法主要包括改变种群初始

化方式和优化麻雀种群的位置更新公式。文献[22]提出反

向学习和柯西变异交替执行的种群初始化方式,文献[23]
结合蝴蝶算法优化发现者位置更新公式,两者都在一定程

度扩大了算法的搜索范围,但算法局部与全局性能不协调

的问题依然存在。因此,本文采用精英混沌反向机制进一

步优化初始种群质量,并采用柯西-高斯变异策略优化跟随

者位置更新方式,自适应调整搜索范围,协调局部与全局搜

索性能。

1)
 

精英混沌反向初始化策略

标准SSA算法随机生成的初始种群在搜索区域内分

布不均,这很大程度上降低了算法在迭代早期的探索能力,
并且会引起算法的不确定性。混沌映射能够产生大量性能

优越的混沌序列,是确定性与随机性的完美结合[24],适合

用来初始化麻雀种群。Logistic、Tent、Sine及Logistic-tent
这四种常见混沌映射的均匀性对比如图3所示。

由图3可知,Logistic-tent和Tent都具有很好的映射

均匀性。Logistic-tent作为复合型混沌,兼具Logistic复杂

的混沌动力学特性与 Tent高度的自相关性和均匀性[25],
其映射表达式为:

Ek+1=
(rEk(1-Ek)+Ek

(4-r)
2

)mod1, Ek <0.5

(rEk(1-Ek)+(1-Ek)
(4-r)
2

)mod1, Ek ≥0.5

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁

(7)
式中:r∈(0,4)为控制参数。本文选择Logistic-tent混沌

并结合精英反向机制实现初始化操作,进一步提升初始麻

雀种群的质量,反向解生成公式为:

V* =
v_mini+v_maxi

2 +
v_mini+v_maxi

2k -
Vi

k
(8)

式中:V* 为反向解;v_mini 和v_maxi 为麻雀种群第i维

边界的最小和最大值;Vi 为原始解;k为缩放系数。
具体初始化操作流程为:通过式(7)映射得到的混沌种

群,带入式(8)得到反向解种群,将混沌种群和反向解种群

中的所有个体进行适应度值排序,选出前50%的个体作为

初始麻雀种群。

2)
 

自适应柯西-高斯变异策略

标准SSA算法中,跟随者的显著趋同性会导致算法在
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图3 4种混沌均匀性对比

全局范围内勘探能力减弱。由式(5)可知,目前最优解和

全局最差解是影响跟随者位置更新的主要因素。一旦发

现者陷入局部极值,跟随者将迅速聚集,极可能错过对潜

在最优解的探索,使算法陷入局部极值而难以逃逸。为

此,采用柯西-高斯变异策略给跟随者增加一个随机步长,
并通过余弦函数自适应调整变异范围,变异公式为:

Z'=Z(1+λ1·Gauss(0,1)+λ2·Cauchy(0,1))
(9)

λ1=0.5×cos(π×
t

Tmax

)+0.5 (10)

λ2= -0.5×cos(π×
t

Tmax

)+0.5 (11)

式中:Z'为变异后跟随者位置;Z 为变异前跟随者位置;

λ1 和λ2 为自适应调整参数;Gauss(0,1)为服从标准高斯

分布的随机数;Cauchy(0,1)为服从标准柯西分布的随机

数。服从柯西分布和服从高斯分布的随机序列信号示意

图如图4和5所示。
由图4和5可知,柯西变异取值范围广,具有两翼特

性,而高斯变异取值范围较小。由式(10)及(11)可知,柯
西变异在迭代初期占比较大,有助于扩大算法搜索范围,
帮助麻雀摆脱局部极值状态。高斯变异在迭代中后期占

比较大,在丰富种群多样性的同时,有助于加速算法的收

敛过程。

图4 标准柯西分布信号示意图

2.3 基于ASSA-RBF的SOC估计模型

  聚类中心、宽度参数和初始输出权值的选取会极大影

响网络的收敛精度和稳定性。K-means算法通过计算样

本间的欧氏距离来判断样本间的相似程度,从而对样本集

合进行聚类。采用 K-means算法得到各隐藏层神经元的

聚类中心,并通过 ASSA算法与RBF网络联合的方法搭

建SOC估计模型,寻找最优的宽度参数和初始权值提升估
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图5 标准高斯分布信号示意图

计模型的性能。估计流程如图6所示。

图6 基于ASSA-RBF联合算法的SOC估计流程

由图6可知,ASSA-RBF估计的主要步骤如下:

1)数据处理。对采集的实验数据序列进行归一化

处理。

2)RBF网络初始化。搭建RBF网络模型并设置网络

参数,通过K-means算法得到聚类中心,并随机设置模型

的宽度参数和初始权值。

3)ASSA算法优化RBF网络。首先,设置ASSA算法

参数并初始化麻雀种群;其次,计算适应度值并评选出发

现者、跟随者和警戒者;然后,对跟随者进行变异操作;最

后,判断是否满足终止条件,若满足则将结果赋予RBF模

型,否则继续迭代。

4)ASSA-RBF模型训练与预测。将 ASSA算法寻得

的最优参数带入RBF网络中进行训练,最后通过测试集对

训练完成的模型进行测试。

3 基于实验数据的模型验证

3.1 数据获取

  动态应力测试(dynamic
 

stress
 

testing,
 

DST)工况作

为最常用的电动汽车模拟工况之一,在性能评估领域应用

广泛。为验证所提联合算法的实际估计性能,以18650型

三元锂电池为实验对象,参考设备使用手册,分别在25℃、

35℃和45℃条件下通过CT-4008型充放电测试仪进行充

放电实验,采集DST工况试验数据,电池具体参数如表1
所示。

表1 电池主要参数

参数 数值

额定电压 3.7
 

V
额定容量 2

 

Ah
寿命 800~1

 

200循环

充电截止电压 4.2
 

V
放电截止电压 3.2

 

V

  25℃下DST工况的电流和电压曲线分别如图7和8
所示。

图7 DST工况电流曲线

图8 DST工况电压曲线
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实验得到的DST工况数据共3
 

780组,将其中3
 

402
组作为训练集,余下378组作为测试集。

3.2 模型验证分析

  为更好地评价模型估计性能,本文选取均方根误差

(ERMSE)和平均百分比误差(EMAPE)作为估计模型的评价指

标,表达式如下:

ERMSE =
1
N∑

N

t=1

(Tt-Ot)2 (12)

EMAPE =
1
N∑

N

t=1

Tt-Ot

Tt
×100% (13)

式中:N 为样本数;Tt 为真实值;Ot 为估计值。

1)
 

模型参数设置

在 MATLAB软件中搭建基于BP、RBF、SSA-RBF以

及ASSA-RBF算法的SOC估计模型。各算法模型的参数

设置如表2所示。

表2 模型参数设置

项目 ASSA-RBF SSA-RBF RBF BP
输入神经元个数 2 2 2 2
输出神经元个数 1 1 1 1
隐含神经元个数 40 40 40 10
最大迭代次数 1

 

000 1
 

000 1
 

000 1
 

000
学习率 0.01 0.01 0.01 0.01

误差容限 0.000
 

1 0.000
 

1 0.000
 

10.000
 

1

  ASSA-RBF模型与SSA-RBF模型中,设置麻雀搜索

算法的最大迭代次数为20,初始麻雀个数为60,安全阈值

为0.6。

2)
 

25
 

℃
 

DST工况下模型估计性能分析

为测试模型的SOC估计性能,基于25℃下采集的

DST工况数据对各模型进行对比验证,结果如图9所示。

图9 不同模型的估计曲线

由图9可知,基于BP和RBF模型的SOC估计结果相

较于另外两种联合算法模型波动幅度较大,且RBF模型的

个别估计结果存在较大误差。图10为各模型分别进行10
次独立SOC估计的ERMSE 对比。

图10 各模型10次估计ERMSE对比

由图10可知,这4种估计模型中,ASSA-RBF模型的

估计精度和稳定性最好,估计均方根误差基本维持在

0.007附近。SSA-RBF模型的估计精度和稳定性次之,BP
模型和 RBF模型最差。各模型10次的误差均值如表3
所示。

表3 不同模型的估计性能评估

模型 ERMSE/% EMAPE/%
BP 1.522 6.273
RBF 1.421 5.020

SSA-RBF 0.917 4.198
ASSA-RBF 0.694 3.150

  由表3可知,RBF模型的估计精度明显优于BP模型。

ASSA-RBF模型估计的ERMSE 与EMAPE 最低,其中ERMSE 相

较于SSA-RBF模型和 RBF模型分别降低了24.32%和

51.16%,EMAPE 分别降低了24.96%和37.25%。
综上所述,虽然RBF模型的估计性能优于BP模型,

但仍存在估计精度较低以及稳定性较差的问题。基于

SSA与RBF联合算法的SOC估计模型在估计精度和稳定

性上都有较大提升,但算法在估计过程中易陷入局部极

值,难以找到最优解。改进后的ASSA-RBF模型估计精度

和稳定性都进一步得到提升。

3)
 

不同温度DST工况下模型估计性能分析

为测试不同温度下各模型的估计适应性能,利用恒温

箱将电池运行的环境温度分别控制在25℃、35℃和45℃,
并采集不同温度下的DST工况数据对各估计模型进行对

比分析。35℃和45℃环境温度下个模型的估计结果如

图11和12所示,图13为各模型在不同温度下估计的

ERMSE 直方图。
由图11和12可知,在35℃下BP模型和RBF模型最

大估计误差绝对值均超过0.065;在45℃下BP模型最大

估计误差绝对值接近0.065,而RBF模型超过0.1。在两

种环境温度下,ASSA-RBF模型和SSA-RBF模型的估计

误差绝对值基本维持在0.03以内,最大为0.04。这两种
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图11 35
 

℃温度下各模型估计结果

图12 45
 

℃温度下各模型估计结果

图13 不同温度下估计ERMSE 对比

联合算法估计模型对前半段SOC估计精度要略高于后

半段。
由图13可知,不同温度下BP模型的误差棒最长,稳

定性最差。RBF模型估计性能优于BP模型,在45℃下

ERMSE 均值与BP模型接近,这两种模型的估计精度受温度

影响较大。SSA-RBF模型的估计性能较之传统模型有较

大提升,但几次独立SOC估计的ERMSE 离散程度较大。各

温度下ASSA-RBF模型的误差棒都最短,估计稳定性最好,
其均方根误差的平均值基本在0.7上下小范围内浮动。

综上所述,本文所提ASSA-RBF联合算法具有良好的

延展泛化能力,其在不同温度下的SOC估计结果表现出良

好的准确性和鲁棒性。

4 结  论

  针对三元锂电池SOC估计对模型估计精度高的要求,
本文提出基于ASSA-RBF联合算法的SOC估计模型。根

据实验测得的DST工况数据,对搭建的4种SOC估计模

型进行对比,得到结论如下:
本文提出的ASSA算法,能有效解决传统SSA算法易

陷入局部极值的问题,提升算法的收敛精度和稳定性。

ASSA与 RBF构成的联合算法能够效提升三元锂电池

SOC的估计精度。

ASSA-RBF联合算法模型在 DST工况下的SOC估

计性能明显优于BP模型、RBF模型和SSA-RBF模型。
在不同温度条件下,ASSA-RBF模型表现出优良的估

计准确性和鲁棒性,有利于三元锂电池SOC的估计。
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